skip to main content


Search for: All records

Creators/Authors contains: "Shi, Zhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning accelerators are important tools for feeding the growing demand for deep learning applications. The automated design of such accelerators--which is important for reducing development costs--can be viewed as a search over a vast and complex design space that consists of all possible accelerators and all the possible software that could run on them. Unfortunately, this search is complicated by the existence of many ordinal and categorical values, which are critical to explore for the ultimate design but are not handled well by existing search techniques. This paper presents a technique for efficiently searching this space by injecting domain information--in this case information about hardware/software (HW/SW) co-design--into the automated search process. Specifically, this paper introduces a novel Bayesian optimization framework called daBO (domain-aware BO) that accepts domain information as input, including those describing ordinal and categorical values. This paper also introduces Spotlight, a design tool based on daBO, and this paper empirically shows that Spotlight produces accelerator designs and software schedules that are orders of magnitude better than those created by the state-of-the-art. For example, for the ResNet-50 deep learning model, Spotlight produces a HW/SW configuration that reduces delay by 135x over the configuration produced by ConfuciuX, a state-of-the-art HW/SW co-design tool, and Spotlight reduces energy-delay product (EDP) by 44x over an Eyeriss-like accelerator, which is an edge-scale hand-designed accelerator. In the realm of cloud-scale accelerators, Spotlight reduces the EDP of a scaled-up Eyeriss-like accelerator by 23x. Our evaluation shows that Spotlight benefits from the efficiency of daBO, which allows Spotlight to identify accelerator designs and software schedules that prior work cannot identify. 
    more » « less
  2. Zelnio, Edmund ; Garber, Frederick D. (Ed.)
  3. We consider the problem of learning the underlying structure of a general discrete pairwise Markov network. Existing approaches that rely on empirical risk minimization may perform poorly in settings with noisy or scarce data. To overcome these limitations, we propose a computationally efficient and robust learning method for this problem with near-optimal sample complexities. Our approach builds upon distributionally robust optimization (DRO) and maximum conditional log-likelihood. The proposed DRO estimator minimizes the worst-case risk over an ambiguity set of adversarial distributions within bounded transport cost or f-divergence of the empirical data distribution. We show that the primal minimax learning problem can be efficiently solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we derive near-optimal sample complexities matching existing results. Extensive empirical evidence with different corruption models corroborates the effectiveness of the proposed methods. 
    more » « less
  4. Abstract Motivation

    Predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) patients accurately is direly needed for clinical decision making. pCR is also regarded as a strong predictor of overall survival. In this work, we propose a deep learning system to predict pCR to NAC based on serial pathology images stained with hematoxylin and eosin and two immunohistochemical biomarkers (Ki67 and PHH3). To support human prior domain knowledge-based guidance and enhance interpretability of the deep learning system, we introduce a human knowledge-derived spatial attention mechanism to inform deep learning models of informative tissue areas of interest. For each patient, three serial breast tumor tissue sections from biopsy blocks were sectioned, stained in three different stains and integrated. The resulting comprehensive attention information from the image triplets is used to guide our prediction system for prognostic tissue regions.

    Results

    The experimental dataset consists of 26 419 pathology image patches of 1000×1000 pixels from 73 TNBC patients treated with NAC. Image patches from randomly selected 43 patients are used as a training dataset and images patches from the rest 30 are used as a testing dataset. By the maximum voting from patch-level results, our proposed model achieves a 93% patient-level accuracy, outperforming baselines and other state-of-the-art systems, suggesting its high potential for clinical decision making.

    Availability and implementation

    The codes, the documentation and example data are available on an open source at: https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract

    Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g−1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (β-cyclodextrin (β-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highestk2value of 24,000 g mg−1h−1among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to <70 ppt within 2 min, which is lower than the advisory level of Environmental Protection Agency of United States. This work thus not only provides a generic approach for constructing PFOA adsorbents, but also develops POPs as a platform for PFOA capture.

     
    more » « less
  6. This paper presents Voyager, a novel neural network for data prefetching. Unlike previous neural models for prefetching, which are limited to learning delta correlations, our model can also learn address correlations, which are important for prefetching irregular sequences of memory accesses. The key to our solution is its hierarchical structure that separates addresses into pages and offsets and that introduces a mechanism for learning important relations among pages and offsets. Voyager provides significant prediction benefits over current data prefetchers. For a set of irregular programs from the SPEC 2006 and GAP benchmark suites, Voyager sees an average IPC improvement of 41.6% over a system with no prefetcher, compared with 21.7% and 28.2%, respectively, for idealized Domino and ISB prefetchers. We also find that for two commercial workloads for which current data prefetchers see very little benefit, Voyager dramatically improves both accuracy and coverage. At present, slow training and prediction preclude neural models from being practically used in hardware, but Voyager’s overheads are significantly lower—in every dimension—than those of previous neural models. For example, computation cost is reduced by 15- 20×, and storage overhead is reduced by 110-200×. Thus, Voyager represents a significant step towards a practical neural prefetcher. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Graph convolution networks (GCNs) have become effective models for graph classification. Similar to many deep networks, GCNs are vulnerable to adversarial attacks on graph topology and node attributes. Recently, a number of effective attack and defense algorithms have been designed, but no certificate of robustness has been developed for GCN-based graph classification under topological perturbations with both local and global budgets. In this paper, we propose the first certificate for this problem. Our method is based on Lagrange dualization and convex envelope, which result in tight approximation bounds that are efficiently computable by dynamic programming. When used in conjunction with robust training, it allows an increased number of graphs to be certified as robust. 
    more » « less
  9. null (Ed.)