skip to main content

Search for: All records

Creators/Authors contains: "Shirazi, Sabrina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ancient hair and remnant plant DNA are important environmental proxies that preserve for millennia in specific archaeological contexts. However, recovery has been rare from late Pleistocene sites and more may be found if deliberately sought. Once discovered, singular hair fragments are not easily identified to taxa through comparative analyses and environmental DNA (eDNA) extraction can be difficult depending on preservation or contamination. In this paper, we present our methods for the combined recovery of ancient hair specimens and eDNA from sediments to improve our understanding of late Pleistocene environments from the Holzman site along Shaw Creek in interior Alaska. The approach serves as a useful case study for learning more about local environmental changes. 
    more » « less
  2. Abstract

    The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century.

    more » « less
  3. Abstract

    Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system‐level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi‐scalar community‐level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel‐2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life.

    more » « less