skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Shvartzvald, Yossi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The impact of the Double Asteroid Redirection Test (DART) spacecraft with Dimorphos allows us to study asteroid collision physics, including momentum transfer, the ejecta properties, and the visibility of such events in the Solar system. We report observations of the DART impact in the ultraviolet (UV), visible light, and near-infrared (IR) wavelengths. The observations support the existence of at least two separate components of the ejecta: a fast and a slow component. The fast-ejecta component is composed of a gaseous phase, moving at about 1.6 km s−1 with a mass of ≲104 kg. The fast ejecta is detected in the UV and visible light, but not in the near-IR z-band observations. Fitting a simplified optical thickness model to these observations allows us to constrain some of the properties of the fast ejecta, including its scattering efficiency and the opacity of the gas. The slow ejecta component is moving at typical velocities of up to about 10 m s−1. It is composed of micrometer-size particles, that have a scattering efficiency, at the direction of the observer, of the order of 10−3 and a total mass of ∼106 kg. The larger particles in the slow ejecta, whose size is bound to be in the range between ∼1 mm and ∼1 m, likely have a scattering efficiency larger than that of the pre-impact Didymos system.

    more » « less
  2. Abstract

    We systematically investigate Vandorou et al.’s claim to have detected the host star of the low-mass-ratio (q< 10−4) microlensing planet OGLE-2016-BLG-1195Lb, via Keck adaptive optics (AO) measurements Δt= 4.12 yr after the event’s peak (t0). If correct, this measurement would contradict the microlens-parallax measurement derived from Spitzer observations taken neart0. We show that this host identification would be in 4σconflict with the original ground-based relative lens–source proper-motion measurements. By contrast, Gould estimated a probabilityp= 10% that the “other star” resolved by single-epoch late-time AO would be a companion to the host or the microlensed source, which is much more probable than a 4σstatistical fluctuation. Independent of this proper-motion discrepancy, the kinematics of this host identification are substantially less probable than those of the Spitzer solution. Hence, this identification should not be accepted, pending additional observations that would either confirm or contradict it, which could be taken in 2023. Motivated by this tension, we present two additional investigations. We explore the possibility that Vandorou et al. identified the wrong “star” for their analysis. Astrometry of KMT and Keck images favors a star (or asterism) lying about 175 mas northwest of Vandorou et al.’s star. We also present event parameters from a combined fit to all survey data, which yields a more precise mass ratio,q= (4.6 ± 0.4) × 10−5. Finally, we discuss the broader implications of minimizing such false positives for the first measurement of the planet mass function, which will become possible when AO on next-generation telescopes are applied to microlensing planets.

    more » « less
  3. Abstract

    The gravitational microlensing technique is most sensitive to planets in a Jupiter-like orbit and has detected more than 200 planets. However, only a few wide-orbit (s> 2) microlensing planets have been discovered, wheresis the planet-to-host separation normalized to the angular Einstein ring radius,θE. Here, we present the discovery and analysis of a strong candidate wide-orbit microlensing planet in the event OGLE-2017-BLG-0448. The whole light curve exhibits long-term residuals to the static binary-lens single-source model, so we investigate the residuals by adding the microlensing parallax, microlensing xallarap, an additional lens, or an additional source. For the first time, we observe a complex degeneracy between all four effects. The wide-orbit models withs∼ 2.5 and a planet-to-host mass ratio ofq∼ 10−4are significantly preferred, but we cannot rule out the close models withs∼ 0.35 andq∼ 10−3. A Bayesian analysis based on a Galactic model indicates that, despite the complicated degeneracy, the surviving wide-orbit models all contain a super-Earth-mass to Neptune-mass planet at a projected planet-host separation of ∼6 au and the surviving close-orbit models all consist of a Jovian-mass planet at ∼1 au. The host star is probably an M or K dwarf. We discuss the implications of this dimension-degeneracy disaster on microlensing light-curve analysis and its potential impact on statistical studies.

    more » « less
  4. Abstract

    Following Shin et al. (2023b), which is a part of the “Systematic KMTNet Planetary Anomaly Search” series (i.e., a search for planets in the 2016 KMTNet prime fields), we conduct a systematic search of the 2016 KMTNet subprime fields using a semi-machine-based algorithm to identify hidden anomalous events missed by the conventional by-eye search. We find four new planets and seven planet candidates that were buried in the KMTNet archive. The new planets are OGLE-2016-BLG-1598Lb, OGLE-2016-BLG-1800Lb, MOA-2016-BLG-526Lb, and KMT-2016-BLG-2321Lb, which show typical properties of microlensing planets, i.e., giant planets orbit M-dwarf host stars beyond their snow lines. For the planet candidates, we find planet/binary or 2L1S/1L2S degeneracies, which are an obstacle to firmly claiming planet detections. By combining the results of Shin et al. (2023b) and this work, we find a total of nine hidden planets, which is about half the number of planets discovered by eye in 2016. With this work, we have met the goal of the systematic search series for 2016, which is to build a complete microlensing planet sample. We also show that our systematic searches significantly contribute to completing the planet sample, especially for planet/host mass ratios smaller than 10−3, which were incomplete in previous by-eye searches of the KMTNet archive.

    more » « less
  5. Abstract

    We measure the Einstein radius of the single-lens microlensing event KMT-2022-BLG-2397 to beθE= 24.8 ± 3.6μas, placing it at the upper shore of the Einstein Desert, 9 ≲θE/μas ≲ 25, between free-floating planets (FFPs) and bulge brown dwarfs (BDs). In contrast to the six BD (25 ≲θE≲ 50) events presented by Gould et al. (2022), which all had giant-star source stars, KMT-2022-BLG-2397 has a dwarf-star source, with angular radiusθast∼ 0.9μas. This prompts us to study the relative utility of dwarf and giant sources for characterizing FFPs and BDs from finite-source point-lens (FSPL) microlensing events. We find “dwarfs” (including main-sequence stars and subgiants) are likely to yield twice as manyθEmeasurements for BDs and a comparable (but more difficult to quantify) improvement for FFPs. We show that neither current nor planned experiments will yield complete mass measurements of isolated bulge BDs, nor will any other planned experiment yield as manyθEmeasurements for these objects as the Korea Microlensing Telescope (KMT). Thus, the currently anticipated 10 yr KMT survey will remain the best way to study bulge BDs for several decades to come.

    more » « less
  6. Aims. We systematically inspected the microlensing data acquired by the KMTNet survey during the previous seasons in order to find anomalous lensing events for which the anomalies in the lensing light curves cannot be explained by the usual binary-lens or binary-source interpretations. Methods. From the inspection, we find that interpreting the three lensing events OGLE-2018-BLG-0584, KMT-2018-BLG-2119, and KMT-2021-BLG-1122 requires four-body (lens+source) models, in which either both the lens and source are binaries (2L2S event) or the lens is a triple system (3L1S event). Following the analyses of the 2L2S events presented in our previous work, here we present the 3L1S analysis of the KMT-2021-BLG-1122. Results. It is found that the lens of the event KMT-2021-BLG-1122 is composed of three masses, in which the projected separations (normalized to the angular Einstein radius) and mass ratios between the lens companions and the primary are ( s 2 ,  q 2 )∼(1.4, 0.53) and ( s 3 ,  q 3 )∼(1.6, 0.24). By conducting a Bayesian analysis, we estimate that the masses of the individual lens components are ( M 1 ,  M 2 ,  M 3 )∼(0.47  M ⊙ , 0.24  M ⊙ , 0.11  M ⊙ ). The companions are separated in projection from the primary by ( a ⊥, 2 ,  a ⊥, 3 )∼(3.5, 4.0) AU. The lens of KMT-2018-BLG-2119 is the first triple stellar system detected via microlensing. 
    more » « less
  7. Aims. We inspect the four microlensing events KMT-2021-BLG-1968, KMT-2021-BLG-2010, KMT-2022-BLG-0371, and KMT-2022-BLG-1013, for which the light curves exhibit partially covered short-term central anomalies. We conduct detailed analyses of the events with the aim of revealing the nature of the anomalies. Methods. We tested various models that can explain the anomalies of the individual events, including the binary-lens (2L1S) and binary-source (1L2S) interpretations. Under the 2L1S interpretation, we thoroughly inspected the parameter space to determine the existence of degenerate solutions, and if they existed, we tested whether the degeneracy could be resolved. Results. We find that the anomalies in KMT-2021-BLG-2010 and KMT-2022-BLG-1013 are uniquely defined by planetary-lens interpretations with planet-to-host mass ratios of q ~ 2.8 × 10 −3 and ~1.6 × 10 −3 , respectively. For KMT-2022-BLG-0371, a planetary solution with a mass ratio q ~ 4 × 10 −4 is strongly favored over the other three degenerate 2L1S solutions with different mass ratios based on the χ 2 and relative proper motion arguments, and a 1L2S solution is clearly ruled out. For KMT-2021-BLG-1968, on the other hand, we find that the anomaly can be explained either by a planetary or a binary-source interpretation, making it difficult to firmly identify the nature of the anomaly. From the Bayesian analyses of the identified planetary events, we estimate that the masses of the planet and host are ( M p / M J , M h / M ⊙ ) = (1.07 −0.68 +1.15 , 0.37 −0.23 +0.40 ), (0.26 −0.11 +0.13 , 0.63 −0.28 +0.32 ), and (0.31 −0.16 +0.46 , 0.18 −0.10 +0.28 ) for KMT-2021-BLG-2010L, KMT-2022-BLG-0371L, and KMT-2022-BLG-1013L, respectively. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. Abstract We continue our program of publishing all planets (and possible planets) found by eye in 2021 Korea Microlensing Telescope Network (KMTNet) online data. We present four planets (KMT-2021-BLG-0712Lb, KMT-2021-BLG-0909Lb, KMT-2021-BLG-2478Lb, and KMT-2021-BLG-1105Lb), with planet-to-host mass ratios in the range − 3.3 ≲ log q ≲ − 2.2 . This brings the total of secure, by-eye, 2021 KMTNet planets to 16, including 8 in this series. The by-eye sample is an important check of the completeness of semiautomated detections, which are the basis for statistical analyses. One of the planets, KMT-2021-BLG-1105Lb, is blended with a relatively bright ( I , V ) ∼ (18.9, 21.6) star that may be the host. This could be verified immediately by high-resolution imaging. If so, the host is an early G dwarf, and the planet could be characterized by radial velocity observations on 30 m class telescopes. 
    more » « less
  9. Abstract

    We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratioq∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic withs≃ 2, wheresis the star–planet separation in units of the angular Einstein radiusθE. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale oftE= 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet ofMp=1.750.51+0.53MJorbiting a late-type star ofMh=0.550.26+0.27Mat a distanceDL=6.11.3+0.9kpc. The projected star–planet separation isa=5.191.23+0.90au, which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion ofμrel= 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets.

    more » « less

    In this work, we update and develop algorithms for KMTNet tender-love care (TLC) photometry in order to create a new, mostly automated, TLC pipeline. We then start a project to systematically apply the new TLC pipeline to the historic KMTNet microlensing events, and search for buried planetary signals. We report the discovery of such a planet candidate in the microlensing event MOA-2019-BLG-421/KMT-2019-BLG-2991. The anomalous signal can be explained by either a planet around the lens star or the orbital motion of the source star. For the planetary interpretation, despite many degenerate solutions, the planet is most likely to be a Jovian planet orbiting an M or K dwarf, which is a typical microlensing planet. The discovery proves that the project can indeed increase the sensitivity of historic events and find previously undiscovered signals.

    more » « less