skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siddique, Saif"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional (2D) kagome lattice metals are interesting because their corner sharing triangle structure enables a wide array of electronic and magnetic phenomena. Recently, post-growth annealing is shown to both suppress charge density wave (CDW) order and establish long-range CDW with the ability to cycle between states repeatedly in the kagome antiferromagnet FeGe. Here we perform transport, neutron scattering, scanning transmission electron microscopy (STEM), and muon spin rotation (μSR) experiments to unveil the microscopic mechanism of the annealing process and its impact on magneto-transport, CDW, and magnetism in FeGe. Annealing at 560 °C creates uniformly distributed Ge vacancies, preventing the formation of Ge-Ge dimers and thus CDW, while 320 °C annealing concentrates vacancies into stoichiometric FeGe regions with long-range CDW. The presence of CDW order greatly affects the anomalous Hall effect, incommensurate magnetic order, and spin-lattice coupling in FeGe, placing FeGe as the only kagome lattice material with tunable CDW and magnetic order. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  2. We study the coupled charge density wave (CDW) and insulator-to-metal transitions in the 2D quantum material 1T-TaS2. By applying in situ cryogenic 4D scanning transmission electron microscopy with in situ electrical resistance measurements, we directly visualize the CDW transition and establish that the transition is mediated by basal dislocations (stacking solitons). We find that dislocations can both nucleate and pin the transition and locally alter the transition temperatureTcby nearly ~75 K. This finding was enabled by the application of unsupervised machine learning to cluster five-dimensional, terabyte scale datasets, which demonstrate a one-to-one correlation between resistance—a global property—and local CDW domain-dislocation dynamics, thereby linking the material microstructure to device properties. This work represents a major step toward defect-engineering of quantum materials, which will become increasingly important as we aim to utilize such materials in real devices. 
    more » « less
  3. The resistivity scaling of copper (Cu) interconnects with decreasing dimensions remains a major challenge in the downscaling of integrated circuits. Molybdenum phosphide (MoP) is a triple-point topological semimetal (TSM) with low resistivity and high carrier density. With the presence of topologically protected surface states that should be defect-tolerant and electron backscatter forbidden, MoP nanowires have shown promising resistivity values compared to Cu interconnects at the nanometer scale. In this work, using template-assisted chemical vapor conversion and standard fabrication techniques that are industry-adoptable, we report the fabrication of porous but highly crystalline MoP narrow lines with controlled sizes and dimensions. We examine the influence of porosity, thickness, and cross-section area on the resistivity values of the fabricated MoP lines to further test the feasibility of MoP for interconnect applications. Our work presents a facile approach to synthesizing TSM nanowires with different dimensions and cross sections, enabling experimental investigations of their predicted unconventional resistivity scaling behavior. Finally, our results provide insight into the effects of porosity on the resistivity of these materials on the nanometer scale. 
    more » « less
  4. Abstract The charge density wave material 1T-TaS2exhibits a pulse-induced insulator-to-metal transition, which shows promise for next-generation electronics such as memristive memory and neuromorphic hardware. However, the rational design of TaS2devices is hindered by a poor understanding of the switching mechanism, the pulse-induced phase, and the influence of material defects. Here, we operate a 2-terminal TaS2device within a scanning transmission electron microscope at cryogenic temperature, and directly visualize the changing charge density wave structure with nanoscale spatial resolution and down to 300 μs temporal resolution. We show that the pulse-induced transition is driven by Joule heating, and that the pulse-induced state corresponds to the nearly commensurate and incommensurate charge density wave phases, depending on the applied voltage amplitude. With our in operando cryogenic electron microscopy experiments, we directly correlate the charge density wave structure with the device resistance, and show that dislocations significantly impact device performance. This work resolves fundamental questions of resistive switching in TaS2devices, critical for engineering reliable and scalable TaS2electronics. 
    more » « less