skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Silman, Miles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Palms play an outsized role in tropical forests and are important resources for humans and wildlife. A central question in tropical ecosystems is understanding palm distribution and abundance. However, accurately identifying and localizing palms in geospatial imagery presents significant challenges due to dense vegetation, overlapping canopies, and variable lighting conditions in mixed-forest landscapes. Addressing this, we introduce PalmProbNet, a probabilistic approach utilizing transfer learning to analyze high-resolution UAV-derived orthomosaic imagery, enabling the detection of palm trees within the dense canopy of the Ecuadorian Rainforest. This approach represents a substantial advancement in automated palm detection, effectively pinpointing palm presence and locality in mixed tropical rainforests. Our process begins by generating an orthomosaic image from UAV images, from which we extract and label palm and non-palm image patches in two distinct sizes. These patches are then used to train models with an identical architecture, consisting of an unaltered pre-trained ResNet-18 and a Multilayer Perceptron (MLP) with specifically trained parameters. Subsequently, PalmProbNet employs a sliding window technique on the landscape orthomosaic, using both small and large window sizes to generate a probability heatmap. This heatmap effectively visualizes the distribution of palms, showcasing the scalability and adaptability of our approach in various forest densities. Despite the challenging terrain, our method demonstrated remarkable performance, achieving an accuracy of 97.32% and a Cohen's κ of 94.59% in testing. 
    more » « less
    Free, publicly-accessible full text available April 18, 2025
  2. Landslides are a central component of tropical montane forest disturbance regimes, including in the tropical Andes biodiversity hotspot, one of the most biodiverse ecosystems in the world. Technological developments in remote sensing have made landscape-scale landslide studies possible, unlocking new avenues for understanding montane biodiversity, ecosystem functioning, and the future effects of climate change. Here, we outline three axes of inquiry for future landslide ecology research in Andean tropical montane forest. We focus exclusively on the Andes due to the vast floral diversity and high endemicity of the tropical Andes biodiversity hotspot, and its importance for global biodiversity and regional ecosystem service provisioning; the broad elevational, latitudinal, and topographic gradients across which landslide dynamics play out; and the existence of long-term plot networks that provide the necessary baseline data on mature forest structure, composition, and functioning to contextualize disturbance impacts. The three lines of study we outline, which draw heavily on remote sensing data and techniques, will deepen scientific understanding of tropical montane forest biodiversity and ecosystem functioning, and the potential impacts of climate change on both. They are: (1) tracking landslide biodiversity dynamics across time and space with high spatial and temporal resolution satellite and unoccupied aerial vehicle imagery; (2) assessing the ecological influence of landslides through the lens of plant functional diversity with imaging spectroscopy; and (3) understanding current and predicting future landslide regimes at scale by building a living landslide inventory spanning the tropical Andes. The research findings from these three axes of inquiry will shed light on the role of landslides and the process of forest recovery from them in both the Andes and worldwide.

    more » « less
    Free, publicly-accessible full text available May 18, 2024
  3. Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Artisanal and small‐scale gold mining (ASGM), a wealth‐generating industry in many regions, is nonetheless a global challenge for governance and a threat to biodiversity, public health, and ecosystem integrity. In 2019, the Peruvian government mobilized a targeted, large‐scale armed intervention against illegal ASGM, which has caused deforestation and water resource degradation in this Tropical Biodiversity Hotspot. Before the intervention, the extent of waterbodies created by mining (mining ponds) was increasing by 33%–90%/year; after, they decreased by 4%–5%/year in targeted zones. Mining activity indicators showed 70%–90% abandonment. New mining activity accelerated in nearby areas outside the targeted area (pond area increases: 42%–83%; deforestation increases +3–5 km2/year). Far from intervention zones, mining remained stable during the study period. Our analysis demonstrates that targeted, large‐scale government intervention can have positive effects on conservation by stopping illegal mining activity and shifting it to permitted areas, thereby setting the stage for governance. Continued conservation efforts must further address the impacts of informal mining while (1) limiting environmental degradation by legal mining; (2) remediating former mining areas to reduce erosion and enable reforestation or alternative uses of the landscape; and (3) sustaining such efforts, as some miners began to return to intervention areas when enforcement relaxed in 2022.

    more » « less
  6. Abstract We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot. 
    more » « less
  7. Giesecke, Thomas (Ed.)