skip to main content

Search for: All records

Creators/Authors contains: "Simon, Vibin Shalom"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the United States, out of the total electricity produced, 2% of it is consumed by the data center facility, and up to 40% of its energy is utilized by the cooling infrastructure to cool all the heat-generating components present inside the facility, with recent technological advancement, the trend of power consumption has increased and as a consequence of increased energy consumption is the increase in carbon footprint which is a growing concern in the industry. In air cooling, the high heat- dissipating components present inside a server/hardware must receive efficient airflow for efficient cooling and to direct the air toward the components ducting is provided. In this study, the duct present in the air-cooled server is optimized and vanes are provided to improve the airflow, and side vents are installed over the sides of the server chassis before the duct is placed to bypass some of the cool air which is entering from the front where the hard drives are present. Experiments were conducted on the Cisco C220 air-cooled server with the new duct and the bypass provided, the effects of the new duct and bypass are quantified by comparing the temperature of the components such as the Central Processing Unit (CPUs), and Platform controller hub (PCH) and the savings in terms of total fan power consumption. A 7.5°C drop in temperature is observed and savings of up to 30% in terms of fan power consumption can be achieved with the improved design compared with the standard server. 
    more » « less
  2. null (Ed.)