Early diagnosis and accurate prognosis of colorectal cancer is critical for determining optimal treatment plans and maximizing patient outcomes, especially as the disease progresses into liver metastases. Computed tomography (CT) is a frontline tool for this task; however, the preservation of predictive radiomic features is highly dependent on the scanning protocol and reconstruction algorithm. We hypothesized that image reconstruction with a high-frequency kernel could result in a better characterization of liver metastases features via deep neural networks. This kernel produces images that appear noisier but preserve more sinogram information. A simulation pipeline was developed to study the effects of imaging parameters on the ability to characterize the features of liver metastases. This pipeline utilizes a fractal approach to generate a diverse population of shapes representing virtual metastases, and then it superimposes them on a realistic CT liver region to perform a virtual CT scan using CatSim. Datasets of 10,000 liver metastases were generated, scanned, and reconstructed using either standard or high-frequency kernels. These data were used to train and validate deep neural networks to recover crafted metastases characteristics, such as internal heterogeneity, edge sharpness, and edge fractal dimension. In the absence of noise, models scored, on average, 12.2% (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ) and 7.5% ($$\alpha =0.012$$ lower squared error for characterizing edge sharpness and fractal dimension, respectively, when using high-frequency reconstructions compared to standard. However, the differences in performance were statistically insignificant when a typical level of CT noise was simulated in the clinical scan. Our results suggest that high-frequency reconstruction kernels can better preserve information for downstream artificial intelligence-based radiomic characterization, provided that noise is limited. Future work should investigate the information-preserving kernels in datasets with clinical labels.$$\alpha =0.049)$$ -
Free, publicly-accessible full text available November 27, 2024
-
It is often the case that the integration of archaeology and Indigenous knowledges with science, technology, engineering, and mathematics (STEM) concepts, practices, and processes is missing in school-based contexts, which limits learners’ perspectives of STEM. This study examined how an afterschool program focused on the intersection of STEM and the field of archaeology and Indigenous knowledges developed and/or enhanced middle school learners’ perspective of (a) Indigenous people; (b) the field of archaeology; and (c) STEM concepts, practices, and processes. Data were collected through 15 focus group interviews held approximately six weeks after the program’s conclusion. The results demonstrated that learners gained a new perspective of STEM, integrating Indigenous and Western perspectives; gained an understanding of archaeology and archaeological concepts; and made connections between STEM concepts embedded in the program and those within and outside of their school experience. Based on the results, we contend that the integration of alternative knowledges and ways of being and seeing the world within nonformal learning environments has the potential to diminish differences and/or tensions between Indigenous and Western knowledges and perspectives of STEM, as well as support archaeology as an approach to facilitating the learning and application of STEM concepts, practices, and processes.more » « less
-
Abstract Background In this paper, we add to the scant literature base on learning from failures with a particular focus on understanding educators' shifting mindset in making‐centred learning environments.
Aims The aim of Study 1 was to explore educators' beliefs about failure for learning and instructional practices within their local making‐centred learning environments. The aim of Study 2 was to examine how participation in a video‐based professional development cycle regarding failure moments in making‐centred learning environments might have shifted museum educators' failure pedagogical mindsets.
Sample In Study 1, the sample included 15 educators at either a middle school or museum. In Study 2, the sample included 39 educators across six museums.
Methods In Study 1, educators engaged in a semi‐structured interview that lasted between 45 and 75 min. In Study 2, the six museums video recorded professional development sessions.
Results Results from Study 1 highlighted educators' failure pedagogical mindsets as either underdeveloped or rigid and absent of relational thinking between self‐ and youth‐failures. One key result from Study 2 was a shift from an abstract sense of failure as youth‐focused to a practical sense of failure as educator‐focused and/or relational (i.e., youth educator‐focused failure moments).
Conclusions Based on the results from Study 1 and Study 2, our research suggests that exploring an educator's relationship with failure is important and witnessing and reflecting upon their own failure pedagogical mindset in action may facilitate a shift towards a more complex and interconnected space for growth and development of both educators and youth.
-
Abstract Background Research points to family talk and interactions involving STEM concepts as one of the most influential informal learning experiences that shape an individual's STEM identity development and encourage their pursuit of a STEM career. However, a recent literature review uncovers limited research regarding the development of engineering identity in young children.
Purpose The purpose of this study was to add to this scant literature by exploring how children position themselves as engineers and how children are positioned as engineers through interactions with parents and other adults within a program focused on family engagement within an engineering design process.
Methods This study includes two parent–child dyads. We collected and analyzed approximately 19.5 h of video data of the two child–parent dyads interacting with one another throughout an engineering design process as part of an out‐of‐school program.
Results Results highlight three ways in which the two children enacted various engineering identities through their positioning, negotiation, and acceptance and/or rejection of positionalities as they engaged in an engineering design process with a parent. These identity enactments included (a) possessing knowledge and authority to make decisions regarding the development of their self‐identified engineering problem and prototype; (b) questioning and challenging adult ideas, solutions, and construction of prototypes; and (c) documenting and communicating their thinking regarding the engineering design through sketches and notes.
Conclusions The significance of this study lies in its potential to change the landscape of those who pursue an engineering career and to contribute to the limited research and ongoing conversations about how to foster environments that support families in creative and collaborative learning specific to the engineering discipline.
-
Our NSF-funded project, CoBuild19, sought to address the large-scale shift to at-home learning based on nationwide school closures that occurred during COVID-19 through creating making/STEM activities for families with children in grades K-6. Representing multiple organizations, our CoBuild19 project team developed approximately 60 STEM activities that make use of items readily available in most households. From March through June 2020, we produced and shared videos and activity guides, averaging 3+ new activities per week. Initially, the activities consisted of whatever team members could pull together, but we soon created weekly themes with associated activities, including Design and Prototype Week, Textiles Week, Social and Emotional Learning Week, and one week which highlighted kids sharing cooking and baking recipes for other kids. All activities were delivered fully online. To do so, our team started a Facebook group on March 13, 2020. Membership grew to 3490 followers by April 1st, to 4245 by May 1st, and leveled off at approximately 5100 members since June 2020. To date, 22 of our videos have over 1000 views, with the highest garnering 23K views. However, we had very little participation in the form of submitted videos, images, or text from families sharing what they were creating, limiting our possible analyses. While we had some initial participation by members, as the FB group grew, substantive evidence of participation faded. To better understand this drop, we polled FB group members about their use of the activities. Responses (n = 101) were dominated by the option, "We are glad to know the ideas are available, but we are not using much" (49%), followed by, "We occasionally do activities" (35%). At this point, we had no data about home participation, so we decided to experiment with different approaches. Our next efforts focused on conducting virtual maker/STEM camps. Leveraging the content produced in the first months of CoBuild19, we hosted two rounds of Camp CoBuild by the end of July, serving close to 100 campers. The camps generated richer data in the form of recorded Zoom camp sessions where campers made synchronously with educators and youth-created Flipgrid videos where campers shared their process and products for each activity. We also collected post-camp surveys and some caregiver interviews. Preliminary analyses have focused on the range of participant engagement and which malleable factors may be associated with deeper engagement. Initial feedback from caregivers indicated that their children gained confidence to experiment with simple materials through engaging in these activities. This project sought to fill what we perceived as a developing need in the community at a large scale (e.g., across the US). Although we have not achieved the level of success we expected, the project achieved quick growth that took us in a different direction than we originally intended. Overall, we created content that educators and families can use to engage kids with minimal materials. Additionally, we have a few models of extended engagement (e.g., Camp CoBuild) that we can develop further into future offerings.more » « less
-
Caregivers are critical to children’s academic and social growth and development. As an adult who provides direct care and support, caregivers play a large role in what concepts and experiences children are exposed to, engage with, and pursue. A growing body of research has highlighted how caregiver influence manifests within out-of-school contexts, yet less is known about the impact of out-of-school learning and engagement from the perspectives of caregivers themselves. This study explored experiences and shifts in caregiver perceptions of shifts within themselves and their children through participation in an out-of-school home-based engineering program. Data were derived from post-program interviews with over 20 participating caregivers from three years of the program. Results illuminate various experiences and shifts in caregiver self-perception and understanding of their children’s learning and development. Specifically, these shifts included enhanced self-reflection and introspection, positive shifts in caregiver interactions with children, and observed increases in self-efficacy and complex thinking within children. Findings contribute to a growing body of knowledge of family engagement and the distinct perspective that caregivers can provide on children’s learning. Further, shifts in caregiver self-concept and self-efficacy in engaging in engineering content make a unique contribution and provide insights into ways that caregiver engagement in out-of-school learning might be adapted to incorporate more accessible learning opportunities, especially those that occur in the home.more » « less