- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Singha, Sanju (2)
-
Ajala, Rasheed (1)
-
Akhter, Syed Humayun (1)
-
Akhter, Syed_Humayun (1)
-
Alim, Md_Samiul (1)
-
Betka, Paul M. (1)
-
Byrnes, Joseph_S (1)
-
Carchedi, Christopher_J_W (1)
-
Gaherty, James_B (1)
-
Lindsey, Eric O. (1)
-
Mathews, Austin M. (1)
-
Mondal, Dhiman (1)
-
Nooner, Scott L. (1)
-
Oryan, Bar (1)
-
Persaud, Patricia (1)
-
Rondenay, Stéphane (1)
-
Sandvol, Eric_A (1)
-
Steckler, Michael S. (1)
-
Steckler, Michael_S (1)
-
Than, Oo (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Indo‐Burman subduction zone represents a global endmember for extreme sediment accretion and is a region characterized by ambiguous tectonic structure. The recent collection of broadband seismic data across the Indo‐Burman accretionary margin as part of the Bangladesh‐India‐Myanmar Array (BIMA) experiment provides an opportunity to investigate the subsurface velocity structure across the incoming plate of an endmember subduction system. We construct a three‐dimensional model for seismic shear velocity using a joint inversion of surface‐ and scattered‐wave constraints. Rayleigh‐wave phase velocities measured from ambient‐noise (12–25 s) and teleseismic earthquakes (20–80 s) constrain absolute shear velocities, while we constrain the locations of and relative contrasts across significant discontinuities in the subsurface using observations from scattered‐wave imaging. From the resulting inversion, we observe two model classes that characterize the evolution of consolidation within the markedly slow uppermost sediments and metasediments along a predominantly southwest‐to‐northeast trend. We interpret variations in deeper seismic structure under two proposed scenarios: (a) a Moho of ∼21–26 km depth underlying a package of metasediments and a thinned basement component, with a slow mantle lithosphere (4.2 km/s) that may contain retained melt from the onset of India‐Antarctica seafloor spreading; or (b) a Moho of ∼51–59 km depth underlying a package of metasediments, basement, and a thick slug of mafic material, which may correspond to significant Kerguelen‐plume‐related underplating. By combining constraints from highly resolved phase‐velocity estimates and scattered‐wave images, we successfully characterize the lateral transitions across the Indo‐Burman forearc margin.more » « less
-
Oryan, Bar; Betka, Paul M.; Steckler, Michael S.; Nooner, Scott L.; Lindsey, Eric O.; Mondal, Dhiman; Mathews, Austin M.; Akhter, Syed Humayun; Singha, Sanju; Than, Oo (, Journal of Geophysical Research: Solid Earth)Abstract The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.more » « less
An official website of the United States government
