skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. G protein-coupled receptors (GPCRs) are an ancient family of signal transducers that are both abundant and consequential in metazoan endocrinology. The evolutionary history and function of the GPCRs of the decapod superfamilies of gonadotropin-releasing hormone (GnRH) are yet to be fully elucidated. As part of which, the use of traditional phylogenetics and the recycling of a diminutive set of mis-annotated databases has proven insufficient. To address this, we have collated and revised eight existing and three novel GPCR repertoires for GnRH of decapod species. We developed a novel bioinformatic workflow that included clustering analysis to capture likely GnRH receptor-like proteins, followed by phylogenetic analysis of the seven transmembrane-spanning domains. A high degree of conservation of the sequences and topology of the domains and motifs allowed the identification of species-specific variation (up to ~70%, especially in the extracellular loops) that is thought to be influential to ligand-binding and function. Given the key functional role of the DRY motif across GPCRs, the classification of receptors based on the variation of this motif can be universally applied to resolve cryptic GPCR families, as was achieved in this work. Our results contribute to the resolution of the evolutionary history of invertebrate GnRH receptors and inform the design of bioassays in their deorphanization and functional annotation. 
    more » « less
  2. Cleaning painted surfaces of their grime, aged varnishes, and discolored overpaint is one of the most common interventive treatments for art conservators. Carefully concocted solvent mixtures navigate the solubility differences between the material removed and the original paint underneath. However, these solutions may be altered by differential evaporation rates of the component solvents (zeotropic behavior), potentially leading to ineffectively weak cleaning or conversely overly strong residual liquid capable of damaging the underlying paint. Azeotropic solvent blends, which maintain a constant composition during evaporation, offer a promising solution. These blends consist of two or more solvents combined at precise concentrations to function as a single solvent. Additionally, pressure-maximum azeotropes feature higher vapor pressure compared to other mixtures, further minimizing contact time and sorption of the solvents into artworks. This study examines azeotropes of isopropanol with n-hexane and 2-butanone in cyclohexane, which have been used previously in art conservation. The evaporation behavior at room temperature of these boiling point azeotropes was assessed using vapor pressure measurements, refractive index determinations, gravimetric analysis, and gas chromatography. Results showed changes in composition during evaporation and found that the actual room temperature azeotropic composition can vary between 1 and 10% v/v in concentration with those commonly reported at their boiling points. Art conservators should be cautious when using azeotropic blends reported at boiling points significantly higher than room temperature. To ensure the safety and efficacy of these mixtures, it is recommended to determine individual azeotropic cleaning blends experimentally before their use. 
    more » « less
  3. Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources. 
    more » « less
  4. RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters. 
    more » « less
  5. The Kramers–Kronig relation (KKR) has a wide range of applications in extreme ultraviolet (XUV) and x-ray spectroscopy. However, the validity of KKR for many of these applications has not been systematically studied, while it is known to require careful attention in nonlinear and pump–probe experiments in optical domain spectroscopy. Here, we study the validity of KKR in XUV attosecond transient absorption spectroscopy pump–probe measurements both experimentally and theoretically using argon Fano resonances as a case study. Experiments are enabled by a phase-resolved method dubbed Complex Attosecond Transient-absorption Spectroscopy (CATS). Although the estimations based on the rotating-wave approximation suggest that KKR violation could be expected in the studied case, our results validate KKR and provide a solid basis for its application in a broad range of attosecond spectroscopy experiments. 
    more » « less
  6. AbstractBreathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air‐breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea.image Key pointsA simplified activity‐based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population.Inspiration is attributable to a canonical excitatory network oscillator mechanism.Sigh emerges from intracellular calcium signalling.The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated.Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals. 
    more » « less
  7. Shakhnovich, Eugene I. (Ed.)
    Understanding of the pairing statistics in solutions populated by a large number of distinct solute species with mutual interactions is a challenging topic, relevant in modeling the complexity of real biological systems. Here we describe, both experimentally and theoretically, the formation of duplexes in a solution of random-sequence DNA (rsDNA) oligomers of lengthL= 8, 12, 20 nucleotides. rsDNA solutions are formed by 4Ldistinct molecular species, leading to a variety of pairing motifs that depend on sequence complementarity and range from strongly bound, fully paired defectless helices to weakly interacting mismatched duplexes. Experiments and theory coherently combine revealing a hybridization statistics characterized by a prevalence of partially defected duplexes, with a distribution of type and number of pairing errors that depends on temperature. We find that despite the enormous multitude of inter-strand interactions, defectless duplexes are formed, involving a fraction up to 15% of the rsDNA chains at the lowest temperatures. Experiments and theory are limited here to equilibrium conditions. 
    more » « less
  8. null (Ed.)