Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Are non‐native plants abundant because they are non‐native, and have advantages over native plants, or because they possess ‘fast’ resource strategies, and have advantages in disturbed environments? This question is central to invasion biology but remains unanswered.We quantified the relative importance of resource strategy and biogeographic origin in 69 441 plots across the conterminous United States containing 11 280 plant species.Non‐native species had faster economic traits than native species in most plant communities (77%, 86% and 82% of plots for leaf nitrogen concentration, specific leaf area, and leaf dry matter content). Non‐native species also had distinct patterns of abundance, but these were not explained by their fast traits. Compared with functionally similar native species, non‐native species were (1) more abundant in plains and deserts, indicating the importance of biogeographic origin, and less abundant in forested ecoregions, (2) were more abundant where co‐occurring species had fast traits, for example due to disturbance, and (3) showed weaker signals of local environmental filtering.These results clarify the nature of plant invasion: Although non‐native plants have consistently fast economic traits, other novel characteristics and processes likely explain their abundance and, therefore, impacts.more » « lessFree, publicly-accessible full text available June 24, 2026
-
ABSTRACT AimNon‐native plants have the potential to harm ecosystems. Harm is classically related to their distribution and abundance, but this geographical information is often unknown. Here, we assess geographical commonness as a potential indicator of invasive status for non‐native flora in the United States. Geographical commonness could inform invasion risk assessments across species and ecoregions. LocationConterminous United States. Time PeriodThrough 2022. Major Taxa StudiedPlants. MethodsWe compiled and standardised occurrence and abundance data from 14 spatial datasets and used this information to categorise non‐native species as uncommon or common based on three dimensions of commonness: area of occupancy, habitat breadth and local abundance. To assess consistency in existing categorizations, we compared commonness to invasive status in the United States. We identified species with higher‐than‐expected abundance relative to their occupancy, habitat breadth or residence time. We calculated non‐native plant richness within United States ecoregions and estimated unreported species based on rarefaction/extrapolation curves. ResultsThis comprehensive database identified 1874 non‐native plant species recorded in 4,844,963 locations. Of these, 1221 species were locally abundant (> 10% cover) in 797,759 unique locations. One thousand one hundred one non‐native species (59%) achieved at least one dimension of commonness, including 565 species that achieved all three. Species with longer residence times tended to meet more dimensions of commonness. We identified 132 species with higher‐than‐expected abundance. Ecoregions in the central United States have the largest estimated numbers of unreported, abundant non‐native plants. Main ConclusionsA high proportion of non‐native species have become common in the United States. However, existing categorizations of invasive species are not always consistent with species' abundance and distribution, even after considering residence time. Considering geographical commonness and higher‐than‐expected abundance revealed in this new dataset could support more consistent and proactive identification of invasive plants and lead to more efficient management practices.more » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT AimBeta diversity quantifies the similarity of ecological assemblages. Its increase, known as biotic homogenisation, can be a consequence of biological invasions. However, species occurrence (presence/absence) and abundance‐based analyses can produce contradictory assessments of the magnitude and direction of changes in beta diversity. Previous work indicates these contradictions should be less frequent in nature than in theory, but a growing number of empirical studies report discrepancies between occurrence‐ and abundance‐based approaches. Understanding if these discrepancies represent a few isolated cases or are systematic across a diversity of ecosystems would allow us to better understand the general patterns, mechanisms and impacts of biotic homogenisation. LocationUnited States. Time Period1963–2020. Major Taxa StudiedVascular plants. MethodsWe used a dataset of more than 70,000 vegetation survey plots to assess differences in biotic homogenisation with and without invasion using both occurrence‐ and abundance‐based metrics of beta diversity. We estimated taxonomic biotic homogenisation by comparing beta diversity of invaded and uninvaded plots with both classes of metrics and investigated the characteristics of the non‐native species pool that influenced the likelihood that these metrics disagree. ResultsIn 78% of plot comparisons, occurrence‐ and abundance‐based calculations agreed in direction, and the two metrics were generally well correlated. Our empirical results are consistent with previous theory. Discrepancies between the metrics were more likely when the same non‐native species was at high cover at both plots compared for beta diversity, and when these plots were spatially distant. Main ConclusionsIn about 20% of cases, our calculations revealed differences in direction (homogenisation vs. differentiation) when comparing occurrence‐ and abundance‐based metrics, indicating that the metrics are not interchangeable, especially when distances between plots are high and invader diversity is low. When data permit, combining the two approaches can offer insights into the role of invasions and extirpations in driving biotic homogenisation/differentiation.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.more » « less
-
The impact of a biological invasion on native communities is expected to be uneven across invaded landscapes due to differences in local abiotic conditions, invader abundance, and traits and composition of the native community. One way to improve predictive ability about the impact of an invasive species given variable conditions is to exploit known mechanisms driving invasive species' success. Invasive plants frequently exhibit allelopathic traits, which can be directly toxic to plants or indirectly impact them via disruption of root symbionts, including mycorrhizal fungi. The indirect mechanism – mutualism disruption – is predicted to impact plants that rely on mycorrhizas but not affect non‐mycorrhizal plant species. To assess whether invader‐driven mutualism disruption explains observed changes in native plant communities, we analyzed long‐term (1998–2018) plant cover data from forest plots across the state of Illinois. We evaluated native plant communities experiencing a range of abundance of invasive allelopathic garlic mustardAlliaria petiolataand varying environmental conditions. Consistent with the mutualism disruption hypothesis, we showed that as garlic mustard abundance increased over time in 0.25 m2sampling quadrats, the abundance of mycorrhizal plant species decreased, but non‐mycorrhizal plant species did not. Over space and time, garlic mustard abundance predicted plant abundances and diversity at the quadrat level, but this relationship was not present at a larger scale when quadrats were aggregated within sites. Garlic mustard's impact on the plant community was highly localized, yet it was as important as abiotic variables for predicting local plant diversity. We showed that garlic mustard abundance was a key predictor of patterns of plant diversity across invasion intensity and environmental heterogeneity in a way that is consistent with mutualism disruption. Our work indicates that the mutualism disruption hypothesis can provide generalizable predictions of the impacts of allelopathic invasive plants that are evident at a broad spatial scale.more » « less
-
Abstract Despite striking global change, management to ensure healthy landscapes and sustained natural resources has tended to set objectives on the basis of the historical range of variability in stationary ecosystems. Many social–ecological systems are moving into novel conditions that can result in ecological transformation. We present four foundations to enable a transition to future-oriented conservation and management that increases capacity to manage change. The foundations are to identify plausible social–ecological trajectories, to apply upstream and deliberate engagement and decision-making with stakeholders, to formulate management pathways to desired futures, and to consider a portfolio approach to manage risk and account for multiple preferences across space and time. We use the Kenai National Wildlife Refuge in Alaska as a case study to illustrate how the four foundations address common land management challenges for navigating transformation and deciding when, where, and how to resist, accept, or direct social–ecological change.more » « less
-
Abstract The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. InvasiveAlliaria petiolata(garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses.more » « less
An official website of the United States government
