Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy.
To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of
, average detection delay of 1.2s, and 0 false alarm.\(97.3\% \) -
null (Ed.)Web personalization, e.g., recommendation or relevance search, tailoring a service/product to accommodate specific online users, is becoming increasingly important. Inductive personalization aims to infer the relations between existing entities and unseen new ones, e.g., searching relevant authors for new papers or recommending new items to users. This problem, however, is challenging since most of recent studies focus on transductive problem for existing entities. In addition, despite some inductive learning approaches have been introduced recently, their performance is sub-optimal due to relatively simple and inflexible architectures for aggregating entity’s content. To this end, we propose the inductive contextual personalization (ICP) framework through contextual relation learning. Specifically, we first formulate the pairwise relations between entities with a ranking optimization scheme that employs neural aggregator to fuse entity’s heterogeneous contents. Next, we introduce a node embedding term to capture entity’s contextual relations, as a smoothness constraint over the prior ranking objective. Finally, the gradient descent procedure with adaptive negative sampling is employed to learn the model parameters. The learned model is capable of inferring the relations between existing entities and inductive ones. Thorough experiments demonstrate that ICP outperforms numerous baseline methods for two different applications, i.e., relevant author search and new item recommendation.more » « less