skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Safe Autonomy in Hybrid Traffic: Detecting Unpredictable Abnormal Behaviors of Human Drivers via Information Sharing
Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy. To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of\(97.3\% \), average detection delay of 1.2s, and 0 false alarm.  more » « less
Award ID(s):
2047354
PAR ID:
10495087
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
ISSN:
2378-962X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles. 
    more » « less
  2. A recent experiment by Wanget al.(Soft Matt., vol. 17, 2021, pp. 2985–2993) shows that a self-propelled compound drop in a surfactant-laden solution can autonomously change its motion from a straight line to a spiraling trajectory, enhancing its capability for chemical detection, catalytic reaction and pollutant removal in a large fluid region. To understand the underlying physics of this peculiar motion, we develop a two-dimensional minimal model to study the swimming dynamics of a compound droplet driven by a self-generated Marangoni stress. We find that, depending on the Péclet number ($$Pe$$) and the viscosity and volume ratios of the two compound phases, the drop can swim in a variety of trajectories, including straight lines, circles, zigzag curves and chaotic trajectories. The drop moves in circles when its two components have comparable volumes. Otherwise, it shows other types of motions depending on$$Pe$$. Our simulation results for the circular motion at small$$Pe$$are qualitatively comparable to the experiment. The transition between zigzag and circular trajectories is mainly determined by the orientation of high-order modes with respect to the drop's swimming direction. For most compound drops, the speed decays as$$Pe^{-1/3}$$at high Péclet numbers as it does for a single-phase drop. A drop with two equal components undergoes a run-and-reorient motion due to the competition between the even and odd modes. 
    more » « less
  3. Abstract The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in themode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay viais 36.9% ± 4.9% with a background level ofevents after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure isyears, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies. 
    more » « less
  4. In the urban corridor with a mixed traffic composition of connected and automated vehicles (CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by both individual driving behaviors and the presence of signalized intersections. Therefore, the development of a coordinated control strategy that effectively accommodates these dual factors becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting. The objective of this structure is to optimize both the average travel time (ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while considering driving modes are presented to illustrate the desired driving behaviors of HDVs and CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments are conducted within a corridor that encompasses three signalized intersections. The performance of our proposed eco-driving strategy is validated in comparison to the intelligent driver model (IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. Results show that our proposed strategy yields reduced travel time and fuel consumption to both IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and V/C ratios on the optimal ATT and AFC. 
    more » « less
  5. Abstract This paper explores deep learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasising driving safety for both autonomous vehicles and human‐operated vehicles. A typical processing pipeline is presented, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilisation, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modelling, and anomaly detection. The main goal is to guide traffic analysts to develop their own custom‐built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL‐based algorithms proposed for each step. Existing open‐source tools and public datasets that can help train DL models are also reviewed. To be more specific, exemplary traffic problems are reviewed and required steps are mentioned for each problem. Besides, connections to the closely related research areas of drivers' cognition evaluation, crowd‐sourcing‐based monitoring systems, edge computing in roadside infrastructures, automated driving systems‐equipped vehicles are investigated, and the missing gaps are highlighted. Finally, commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems are reviewed. 
    more » « less