skip to main content


This content will become publicly available on September 22, 2024

Title: Towards Safe Autonomy in Hybrid Traffic: Detecting Unpredictable Abnormal Behaviors of Human Drivers via Information Sharing

Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy.

To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of\(97.3\% \), average detection delay of 1.2s, and 0 false alarm.

 
more » « less
Award ID(s):
2047354
NSF-PAR ID:
10495087
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Cyber-Physical Systems
ISSN:
2378-962X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers from a high beamforming overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure (V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because vehicles are dynamic, there is a large potential for link blockages. These blockages are detrimental to the connected applications running on the vehicle, such as cooperative perception and remote driver takeover. Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is not enough to prevent the blockage of links. Many modern CAVs motion planning algorithms routinely use other vehicle’s near-future path plans, either by explicit communication among vehicles, or by prediction. In this paper, we make use of the knowledge of other vehicle’s near future path plans to further improve the RSU association mechanism for CAVs. We solve the RSU association algorithm by converting it to a shortest path problem with the objective to maximize the total communication bandwidth. We evaluate our approach, titled B-AWARE, in simulation using Simulation of Urban Mobility (SUMO) and Digital twin for self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density and RSU placements. Simulations show B-AWARE results in a 1.05× improvement of the potential datarate in the average case and 1.28× in the best case vs. the state-of-the-art. But more impressively, B-AWARE reduces the time spent with no connection by 42% in the average case and 60% in the best case as compared to the state-of-the-art methods. This is a result of B-AWARE reducing nearly 100% of blockage occurrences.

     
    more » « less
  2. Summary

    In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.

     
    more » « less
  3. Connected Autonomous Vehicles (CAVs) are expected to enable reliable, efficient, and intelligent transportation systems. Most motion planning algorithms for multi-agent systems implicitly assume that all vehicles/agents will execute the expected plan with a small error and evaluate their safety constraints based on this fact. This assumption, however, is hard to keep for CAVs since they may have to change their plan (e.g., to yield to another vehicle) or are forced to stop (e.g., A CAV may break down). While it is desired that a CAV never gets involved in an accident, it may be hit by other vehicles and sometimes, preventing the accident is impossible (e.g., getting hit from behind while waiting behind the red light). Responsibility-Sensitive Safety (RSS) is a set of safety rules that defines the objective of CAV to blame, instead of safety. Thus, instead of developing a CAV algorithm that will avoid any accident, it ensures that the ego vehicle will not be blamed for any accident it is a part of. Original RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios, plus RSS rules do not prevent deadlock situations among vehicles. In this paper, we propose a new formulation for RSS rules that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV’s motion planning algorithm to enable cooperative driving of CAVs. We use Control Barrier Functions to enforce safety constraints and compute the energy optimal trajectory for the ego CAV. Finally, to ensure liveness, our approach detects and resolves deadlocks in a decentralized manner. We have conducted different experiments to verify that the ego CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism using our simulator. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously with the case that they are autonomous and connected. 
    more » « less
  4. Abstract Background

    Improving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates of dynamic muscle movement, thus further improving the HMI’s prediction accuracy.

    Objective

    The purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than sole sEMG or US imaging.

    Methods

    Ten young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated as a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM was validated across all walking speeds.

    Results

    On average, the normalized moment prediction root mean square error was reduced by 14.58 % ($$p=0.012$$p=0.012) and 36.79 % ($$p<0.001$$p<0.001) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from single-speed modes for the moment prediction.

    Conclusions

    The proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially used in bio-inspired control strategies for rehabilitative devices due to its superior prediction.

     
    more » « less
  5. Abstract

    Approximate integer programming is the following: For a given convex body$$K \subseteq {\mathbb {R}}^n$$KRn, either determine whether$$K \cap {\mathbb {Z}}^n$$KZnis empty, or find an integer point in the convex body$$2\cdot (K - c) +c$$2·(K-c)+cwhich isK, scaled by 2 from its center of gravityc. Approximate integer programming can be solved in time$$2^{O(n)}$$2O(n)while the fastest known methods for exact integer programming run in time$$2^{O(n)} \cdot n^n$$2O(n)·nn. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$x^* \in (K \cap {\mathbb {Z}}^n)$$x(KZn)can be found in time$$2^{O(n)}$$2O(n), provided that theremaindersof each component$$x_i^* \mod \ell $$ximodfor some arbitrarily fixed$$\ell \ge 5(n+1)$$5(n+1)of$$x^*$$xare given. The algorithm is based on acutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a$$2^{O(n)}n^n$$2O(n)nnalgorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a newasymmetric approximate Carathéodory theoremthat might be of interest on its own. Our second method concerns integer programming problems in equation-standard form$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$Ax=b,0xu,xZn. Such a problem can be reduced to the solution of$$\prod _i O(\log u_i +1)$$iO(logui+1)approximate integer programming problems. This implies, for example thatknapsackorsubset-sumproblems withpolynomial variable range$$0 \le x_i \le p(n)$$0xip(n)can be solved in time$$(\log n)^{O(n)}$$(logn)O(n). For these problems, the best running time so far was$$n^n \cdot 2^{O(n)}$$nn·2O(n).

     
    more » « less