Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »Free, publicly-accessible full text available July 7, 2023
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratiomore »Free, publicly-accessible full text available July 7, 2023
-
In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuummore »Free, publicly-accessible full text available June 29, 2023
-
It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, itmore »Free, publicly-accessible full text available May 8, 2023
-
Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »Free, publicly-accessible full text available May 8, 2023
-
The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to a wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In 2 O 3 -based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable and high TFT performance[3, 4], identified vacancy-based native defect doping mechanisms[5], suggested interfacial buffer layers to promote charge injection capability[6], and established the role of third cation species on the carrier generation and carrier transport[7]. More recently, we have reported facile manufacturing of p-type SnOx throughmore »Free, publicly-accessible full text available July 7, 2023
-
Free, publicly-accessible full text available June 1, 2023
-
Free, publicly-accessible full text available April 1, 2023
-
Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previousmore »