Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Fluid–solid interactions in nanoporous materials underlie processes fundamental to natural and engineered processes, including the thermochemical transformation of argillaceous materials during high-level nuclear waste disposal. Operando fluid–solid resolution at the nanoscale, however, is still not possible with existing optical and electron microscopy approaches that are constrained by the diffraction limit of light and by vacuum-fluid incompatibility, respectively. In this work, we develop an operando scanning electron microscopy (SEM) platform that enables the first direct in situ imaging of dynamic fluid–solid interactions in nanoporous materials with spatio-temporal-chemical resolutions of ∼2.5 nm per pixel and 10 fps, along with elemental distributions. Using this platform, we reveal necessary conditions for thermochemical pore and fracture generation in shales and measure their surface wetting characteristics that constrain the feasibility of high-level nuclear waste containment. Notably, we show that low heating-rate conditions typical of radioactive decay produce hydrocarbon liquids that wet fracture and pore surfaces in a self-sealing manner to impede aqueous radionuclide advection.more » « less
-
Shamu, Caroline (Ed.)Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death.more » « less
-
Rhomboid-mediated cleavage of the immune receptor XA21 protects grain set and male fertility in riceTo maintain growth and to successfully reproduce, organisms must protect key functions in specific tissues, particularly when countering pathogen invasion using internal defensive proteins that may disrupt their own developmental processes. The rice immune receptor XA21 confers race-specific resistance againstXanthomonas oryzaepv.oryzae, which causes the deadly disease bacterial leaf blight. Here, we demonstrate that XA21 is cleaved by the rhomboid-like protease OsRBL3b, likely within its transmembrane domain.OsRBL3bmRNA transcripts are preferentially expressed in rice spikelets. Rice plants expressingXa21but lacking a functionalOsRBL3bdisplayed impaired anther dehiscence and pollen viability, resulting in male sterility and yield reduction with high levels of XA21 protein present in spikelets during anthesis. In leaves,osrbl3bmutants expressing XA21 had normal levels of this resistance protein and disease immunity. This balance between reproduction and disease resistance through the specific expression of a rhomboid protease may be key to limiting the detrimental effects of an active immune response and may be useful in future for genetic improvement of crops.more » « less
-
Reclamation of coal fly ash, a legacy waste material, provides an alternative pathway for the recovery of rare earth elements (REEs) while reducing the environmental stresses that stem from traditional mining. The reactive transport processes underlying the recovery of REEs from ash wastes, however, are yet to be fully elucidated owing to the physicochemical complexity of the micro/nanoscale fly ash particles, including the crystallinity of the particulate matrix. In this work, we use transmission electron microscopy to characterize the material properties of ash particles and reveal the impact of crystallinity on the reactive transport processes governing access to and recovery of the encapsulated REEs. Our results show, for the first time, two distinct crystalline structures of REE-bearing aluminosilicate particles: dense amorphous matrices that facilitate the exchange of chemical species through their lattice interstices and porous polycrystalline matrices characterized by connected intraparticle pores and chemical inertness to leaching solutions. Notably, the presence of matrix crystallinity, or the lack thereof, governs the extent of reagents consumed parasitically by secondary reactions with the aluminosilicate matrix. Our work reveals how the variability of crystalline structures of the ash matrices hosting REEs defines the pathways for the recovery of REEs, providing key insights required for the development of targeted recovery processes.more » « less
-
Abstract In a survey and three experiments (one preregistered with a nationally representative sample), we examined if vaccination requirements are likely to backfire, as commonly feared. We investigated if relative to encouraging free choice in vaccination, requiring a vaccine weakens or strengthens vaccination intentions, both in general and among individuals with a predisposition to experience psychological reactance. In the four studies, compared to free choice, requirements strengthened vaccination intentions across racial and ethnic groups, across studies, and across levels of trait psychological reactance. The results consistently suggest that fears of a backlash against vaccine mandates may be unfounded and that requirements will promote COVID-19 vaccine uptake in the United States.more » « less
-
Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.more » « less
An official website of the United States government
