We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images of
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract IIZw096 , a merging luminous infrared galaxy (LIRG) atz = 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (L IR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%–70% of the IR bolometric luminosity, or 3–5 × 1011L ⊙, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3–5 × 1012L ⊙kpc−2. In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies. -
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6
μ m region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii ]λ 5.34μ m and [Arii ]λ 6.99μ m lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ 6.91μ m, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv ] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii ] ∼ 180 pc from the AGN that also show highL (H2)/L (PAH) andL ([Feii ])/L (Pfα ) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into themore »