skip to main content

Search for: All records

Creators/Authors contains: "Sporns, Olaf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 27, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Free, publicly-accessible full text available May 15, 2023
  4. Free, publicly-accessible full text available May 23, 2023
  5. Abstract

    Intelligence describes the general cognitive ability level of a person. It is one of the most fundamental concepts in psychological science and is crucial for the effective adaption of behavior to varying environmental demands. Changing external task demands have been shown to induce reconfiguration of functional brain networks. However, whether neural reconfiguration between different tasks is associated with intelligence has not yet been investigated. We used functional magnetic resonance imaging data from 812 subjects to show that higher scores of general intelligence are related to less brain network reconfiguration between resting state and seven different task states as well as to network reconfiguration between tasks. This association holds for all functional brain networks except the motor system and replicates in two independent samples (n = 138 and n = 184). Our findings suggest that the intrinsic network architecture of individuals with higher intelligence scores is closer to the network architecture as required by various cognitive demands. Multitask brain network reconfiguration may, therefore, represent a neural reflection of the behavioral positive manifold – the essence of the concept of general intelligence. Finally, our results support neural efficiency theories of cognitive ability and reveal insights into human intelligence as an emergentmore »property from a distributed multitask brain network.

    « less
  6. Free, publicly-accessible full text available February 4, 2023
  7. Research has found that the vividness of conscious experience is related to brain dynamics. Despite both being anaesthetics, propofol and ketamine produce different subjective states: we explore the different effects of these two anaesthetics on the structure of dynamic attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two macaques. We used two methods: the first embeds the recordings in a continuous high-dimensional manifold on which we use topological data analysis to infer the presence of higher-order dynamics. The second reconstruction, an ordinal partition network embedding, allows us to create a discrete state-transition network, which is amenable to information-theoretic analysis and contains rich information about state-transition dynamics. We find that the awake condition generally had the ‘richest’ structure, visiting the most states, the presence of pronounced higher-order structures, and the least deterministic dynamics. By contrast, the propofol condition had the most dissimilar dynamics, transitioning to a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly, seemed to combine aspects of both: while it was generally less complex than the awake condition, it remained well above propofol in almost all measures. These results provide deeper and more comprehensive insights than what is typically gained by using point-measures of complexity.