skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stefanov, Atanas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Abstract In the seminal work of Benjamin (1974Nonlinear Wave Motion(American Mathematical Society)), in the late 70s, he has derived the ubiquitous Benjamin model, which is a reduced model in the theory of water waves. Notably, it contains two parameters in its dispersion part and under some special circumstances, it turns into the celebrated KdV or the Benjamin–Ono equation, During the 90s, there was renewed interest in it. Benjamin (1992J. Fluid Mech.245401–11; 1996Phil. Trans. R. Soc.A3541775–806) studied the problem for existence of solitary waves, followed by works of Bona–Chen (1998Adv. Differ. Equ.351–84), Albert–Bona–Restrepo (1999SIAM J. Appl. Math.592139–61), Pava (1999J. Differ. Equ.152136–59), who have showed the existence of travelling waves, mostly by variational, but also bifurcation methods. Some results about the stability became available, but unfortunately, those were restricted to either small waves or Benjamin model, close to a distinguished (i.e. KdV or BO) limit. Quite recently, in 2024 (arXiv:2404.04711 [math.AP]), Abdallahet al, proved existence, orbital stability and uniqueness results for these waves, but only for large values of c γ 2 1 . In this article, we present an alternative constrained maximization procedure for the construction of these waves, for the full range of the parameters, which allows us to ascertain their spectral stability. Moreover, we extend this construction to allL2subcritical cases (i.e. power nonlinearities ( | u | p 2 u ) x , 2 < p 6 ). Finally, we propose a different procedure, based on a specific form of the Sobolev embedding inequality, which works for all powers 2 < p < , but produces some unstable waves, for largep. Some open questions and a conjecture regarding this last result are proposed for further investigation. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable. 
    more » « less
  5. Abstract In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on Z d . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity ω φ ω l 2 2 . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model. 
    more » « less
  6. Abstract In the present work we provide a characterization of the ground states of a higher-dimensional quadratic-quartic model of the nonlinear Schrödinger class with a combination of a focusing biharmonic operator with either an isotropic or an anisotropic defocusing Laplacian operator (at the linear level) and power-law nonlinearity. Examining principally the prototypical example of dimension d = 2, we find that instability arises beyond a certain threshold coefficient of the Laplacian between the cubic and quintic cases, while all solutions are stable for powers below the cubic. Above the quintic, and up to a critical nonlinearity exponent p , there exists a progressively narrowing range of stable frequencies. Finally, above the critical p all solutions are unstable. The picture is rather similar in the anisotropic case, with the difference that even before the cubic case, the numerical computations suggest an interval of unstable frequencies. Our analysis generalizes the relevant observations for arbitrary combinations of Laplacian prefactor b and nonlinearity power p . 
    more » « less