skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stefanski, Artur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract Greater tree diversity often increases forest productivity by increasing the fraction of light captured and the effectiveness of light use at the community scale. However, light may shape forest function not only as a source of energy or a cause of stress but also as a context cue: Plant photoreceptors can detect specific wavelengths of light, and plants use this information to assess their neighborhoods and adjust their patterns of growth and allocation. These cues have been well documented in laboratory studies, but little studied in diverse forests. Here, we examined how the spectral profile of light (350–2200 nm) transmitted through canopies differs among tree communities within three diversity experiments on two continents (200 plots each planted with one to 12 tree species, amounting to roughly 10,000 trees in total), laying the groundwork for expectations about how diversity in forests may shape light quality with consequences for forest function. We hypothesized—and found—that the species composition and diversity of tree canopies influenced transmittance in predictable ways. Canopy transmittance—in total and in spectral regions with known biological importance—principally declined with increasing leaf area per ground area (LAI) and, in turn, LAI was influenced by the species composition and diversity of communities. For a given LAI, broadleaved angiosperm canopies tended to transmit less light with lower red‐to‐far‐red ratios than canopies of needle‐leaved gymnosperms or angiosperm‐gymnosperm mixtures. Variation among communities in the transmittance of individual leaves had a minor effect on canopy transmittance in the visible portion of the spectrum but contributed beyond this range along with differences in foliage arrangement. Transmittance through mixed species canopies often deviated from expectations based on monocultures, and this was only partly explained by diversity effects on LAI, suggesting that diversity effects on transmittance also arose through shifts in the arrangement and optical properties of foliage. We posit that differences in the spectral profile of light transmitted through diverse canopies serve as a pathway by which tree diversity affects some forest ecosystem functions. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available September 1, 2025
  4. Abstract Photosynthetic acclimation to both warming and elevated CO2of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2on photosynthetic capacity (VcmaxandJmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show thatVcmaxandJmaxat a standard temperature of 25°C did not change with warming, whileVcmaxandJmaxat their thermal optima (Topt) and growth temperature (Tg) increased. Moreover,VcmaxandJmaxat either 25°C,ToptorTgdecreased with elevated CO2. TheJmax/Vcmaxratio decreased with warming when assessed at bothToptandTgbut did not significantly vary at 25°C. TheJmax/Vcmaxincreased with elevated CO2at either reference temperature. We found no significant interaction between warming and elevated CO2on all traits. If this lack of interaction between warming and elevated CO2on theVcmax,JmaxandJmax/Vcmaxratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  6. The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal–temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksianaandBetula papyrifera) and two temperate (Pinus strobusandQuercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal–temperate ecotone. 
    more » « less
  7. Abstract Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts inToptAof field-grown trees will keep pace with the temperatures predicted for the 21stcentury under elevated atmospheric CO2concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2levels, we show thatToptAof mature boreal conifers increased with warming. However, shifts inToptAdid not keep pace with warming asToptAonly increased by 0.26–0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2spruce, while remaining constant in ambient CO2spruce and in both ambient CO2and elevated CO2tamarack with warming. Although shifts inToptAof these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures. 
    more » « less
  8. Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025