Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Tree diversity shapes the spectral signature of light transmittance in developing forests
                        
                    
    
            Abstract Greater tree diversity often increases forest productivity by increasing the fraction of light captured and the effectiveness of light use at the community scale. However, light may shape forest function not only as a source of energy or a cause of stress but also as a context cue: Plant photoreceptors can detect specific wavelengths of light, and plants use this information to assess their neighborhoods and adjust their patterns of growth and allocation. These cues have been well documented in laboratory studies, but little studied in diverse forests. Here, we examined how the spectral profile of light (350–2200 nm) transmitted through canopies differs among tree communities within three diversity experiments on two continents (200 plots each planted with one to 12 tree species, amounting to roughly 10,000 trees in total), laying the groundwork for expectations about how diversity in forests may shape light quality with consequences for forest function. We hypothesized—and found—that the species composition and diversity of tree canopies influenced transmittance in predictable ways. Canopy transmittance—in total and in spectral regions with known biological importance—principally declined with increasing leaf area per ground area (LAI) and, in turn, LAI was influenced by the species composition and diversity of communities. For a given LAI, broadleaved angiosperm canopies tended to transmit less light with lower red‐to‐far‐red ratios than canopies of needle‐leaved gymnosperms or angiosperm‐gymnosperm mixtures. Variation among communities in the transmittance of individual leaves had a minor effect on canopy transmittance in the visible portion of the spectrum but contributed beyond this range along with differences in foliage arrangement. Transmittance through mixed species canopies often deviated from expectations based on monocultures, and this was only partly explained by diversity effects on LAI, suggesting that diversity effects on transmittance also arose through shifts in the arrangement and optical properties of foliage. We posit that differences in the spectral profile of light transmitted through diverse canopies serve as a pathway by which tree diversity affects some forest ecosystem functions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2021898
- PAR ID:
- 10589841
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 106
- Issue:
- 3
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ecological zonation in coastal forests is driven by sea level rise and storm‐surge events. Mature trees that can survive moderately saline conditions show signs of stress when soil salinity increases above its tolerance levels. As leaf burn, foliar damage, and defoliation reduce tree canopy cover, light gaps form within the crown. At the forest‐marsh edge, canopy cover loss is most severe; trunks of dead trees without canopies form “ghost forests.” Canopy thinning and light from the edge alter conditions for understory vegetation, promoting the growth of shrubs and facilitating establishment and spread of invasive species that were previously limited by light competition. In this research, we present an analysis of illuminance and temperature in a coastal forest transitioning to a salt marsh. Light sensors above the ground surface were used to measure light attenuation of trees and understory vegetation and to observe the effect of reduced canopies at the forest‐marsh edge. Farther from the marsh, where salinity is lower and trees are healthy, dense canopies attenuate light. We estimate that during the growing season, tree canopies intercept 50% of illuminance on average. Closer to the marsh, canopy thinning, and tree death allow greater light penetration from above, as well as from the adjacent marsh. These illuminance values are further increased by light penetration from the forest‐marsh edge (edge effect). Here, higher illuminance may permitPhragmites australisexpansion. At intermediate locations, trees intercept between 32% and 49% of light and the understory shrubMorella ceriferaintercepts a further 45% of penetrating light based on comparisons of illuminance above and below shrub canopies. Light penetration from the edge can also be felt. The presence ofM. ceriferareduces the air temperature close to the soil surface, creating a cooler summer microclimate. The tree health state is reflected in the canopy size. The canopy patterns and the edge effect are responsible for light availability distribution along forest‐marsh gradients, consequently affecting the understory vegetation biomass. We conclude that during forest retreat driven by sea level rise, tree dieback increases light availability favoring the temporary encroachment ofPh. australisandM. ceriferain the understory.more » « less
- 
            null (Ed.)Cajander larch (Larix cajanderi Mayr.) forests of the Siberian Arctic are experiencing increased wildfire activity in conjunction with climate warming. These shifts could affect postfire variation in the density and arrangement of trees and understory plant communities. To better understand how understory plant composition, abundance, and diversity vary with tree density, we surveyed understory plant communities and stand characteristics (e.g., canopy cover, active layer depth, and soil organic layer depth) within 25 stands representing a density gradient of similarly-aged larch trees that established following a 1940 fire near Cherskiy, Russia. Understory plant diversity and mean total plant abundance decreased with increased canopy cover. Canopy cover was also the most important variable affecting individual species’ abundances. In general, tall shrubs (e.g., Betula nana subsp. exilis) were more abundant in low-density stands with high light availability, and mosses (e.g., Sanionia spp.) were more abundant in high-density stands with low light availability. These results provide evidence that postfire variation in tree recruitment affects understory plant community composition and diversity as stands mature. Therefore, projected increases in wildfire activity in the Siberian Arctic could have cascading impacts on forest structure and composition in both overstory and understory plant communities.more » « less
- 
            Abstract AimCanopy structural complexity, which describes the degree of heterogeneity in vegetation density, is strongly tied to a number of ecosystem functions, but the community and structural characteristics that give rise to variation in complexity at site to subcontinental scales are poorly defined. We investigated how woody plant taxonomic and phylogenetic diversity, maximum canopy height, and leaf area index (LAI) relate to canopy rugosity, a measure of canopy structural complexity that is correlated with primary production, light capture, and resource‐use efficiency. LocationOur analysis used 122 plots distributed across 10 ecologically and climatically variable forests spanning a > 1,500 km latitudinal gradient within the National Ecological Observatory Network (NEON) of the USA. Time period2016–2018. Taxa studiedWoody plants. MethodsWe used univariate and multivariate modelling to examine relationships between canopy rugosity, and community and structural characteristics hypothesized to drive site and subcontinental variation in complexity. ResultsSpatial variation in canopy rugosity within sites and across the subcontinent was strongly and positively related to maximum canopy height (r2 = .87 subcontinent‐wide), with the addition of species richness in a multivariate model resolving another 2% of the variation across the subcontinent. Individually, woody plant species richness and phylogenetic diversity (r2 = .17 to .44, respectively) and LAI (r2 = .16) were weakly to moderately correlated with canopy rugosity at the subcontinental scale, and inconsistently explained spatial variation in canopy rugosity within sites. Main conclusionsWe conclude that maximum canopy height is a substantially stronger predictor of complexity than diversity or LAI within and across forests of eastern North America, suggesting that canopy volume places a primary constraint on the development of structural complexity. Management and land‐use practices that encourage and sustain tall temperate forest canopies may support greater complexity and associated increases in ecosystem functioning.more » « less
- 
            Cavaleri, Molly (Ed.)Abstract Leaf trait variation enables plants to utilize large gradients of light availability that exist across canopies of high leaf area index (LAI), allowing for greater net carbon gain while reducing light availability for understory competitors. While these canopy dynamics are well understood in forest ecosystems, studies of canopy structure of woody shrubs in grasslands are lacking. To evaluate the investment strategy used by these shrubs, we investigated the vertical distribution of leaf traits and physiology across canopies of Cornus drummondii, the predominant woody encroaching shrub in the Kansas tallgrass prairie. We also examined the impact of disturbance by browsing and grazing on these factors. Our results reveal that leaf mass per area (LMA) and leaf nitrogen per area (Na) varied approximately threefold across canopies of C. drummondii, resulting in major differences in the physiological functioning of leaves. High LMA leaves had high photosynthetic capacity, while low LMA leaves had a novel strategy for maintaining light compensation points below ambient light levels. The vertical allocation of leaf traits in C. drummondii canopies was also modified in response to browsing, which increased light availability at deeper canopy depths. As a result, LMA and Na increased at lower canopy depths, leading to a greater photosynthetic capacity deeper in browsed canopies compared to control canopies. This response, along with increased light availability, facilitated greater photosynthesis and resource-use efficiency deeper in browsed canopies compared to control canopies. Our results illustrate how C. drummondii facilitates high LAI canopies and a compensatory growth response to browsing—both of which are key factors contributing to the success of C. drummondii and other species responsible for grassland woody encroachment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
