Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionThis paper addresses the critical need for adaptive formation control in Autonomous Underwater Vehicles (AUVs) without requiring knowledge of system dynamics or environmental data. Current methods, often assuming partial knowledge like known mass matrices, limit adaptability in varied settings. MethodsWe proposed two-layer framework treats all system dynamics, including the mass matrix, as entirely unknown, achieving configuration-agnostic control applicable to multiple underwater scenarios. The first layer features a cooperative estimator for inter-agent communication independent of global data, while the second employs a decentralized deterministic learning (DDL) controller using local feedback for precise trajectory control. The framework's radial basis function neural networks (RBFNN) store dynamic information, eliminating the need for relearning after system restarts. ResultsThis robust approach addresses uncertainties from unknown parametric values and unmodeled interactions internally, as well as external disturbances such as varying water currents and pressures, enhancing adaptability across diverse environments. DiscussionComprehensive and rigorous mathematical proofs are provided to confirm the stability of the proposed controller, while simulation results validate each agent’s control accuracy and signal boundedness, confirming the framework’s stability and resilience in complex scenarios.more » « lessFree, publicly-accessible full text available February 14, 2026
-
This paper proposes a novel fault isolation (FI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FI scheme is its capability of dealing with the effects of system uncertainties for accurate FI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, to achieve locally-accurate identification of the uncertain system dynamics under faulty modes. A bank of FI estimators with associated adaptive thresholds are finally designed for real-time FI decision making. Rigorous analysis on the fault isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness of the proposed approach.more » « less
-
This paper is focused on the output tracking control problem of a wave equation with both matched and unmatched boundary uncertainties. An adaptive boundary feedback control scheme is proposed by utilizing radial basis function neural networks (RBF NNs) to deal with the effect of system uncertainties. Specifically, two RBF NN models are first developed to approximate the matched and unmatched system uncertain dynamics respectively. Based on this, an adaptive NN control scheme is derived, which consists of: (i) an adaptive boundary feedback controller embedded by the NN model approximating the matched uncertainty, for rendering stable and accurate tracking control; and (ii) a reference model embedded by the NN model approximating the unmatched uncertainty, for generating a prescribed reference trajectory. Rigorous analysis is performed using the Lyapunov theory and the C0-semigroup theory to prove that our proposed control scheme can guarantee closed-loop stability and wellposedness. Simulation study has been conducted to demonstrate effectiveness of the proposed approach.more » « less
-
Soft robots have recently drawn extensive attention thanks to their unique ability of adapting to complicated environments. Soft robots are designed in a variety of shapes of aiming for many different applications. However, accurate modelling and control of soft robots is still an open problem due to the complex robot structure and uncertain interaction with the environment. In fact, there is no unified framework for the modeling and control of generic soft robots. In this paper, we present a novel data-driven machine learning method for modeling a cable-driven soft robot. This machine learning algorithm, named deterministic learning (DL), uses soft robot motion data to train a radial basis function neural network (RBFNN). The soft robot motion dynamics are then guaranteed to be accurately identified, represented, and stored as an RBFNN model with converged constant neural network weights. To validate our method, We have built a simulated soft robot almost identical to our real inchworm soft robot, and we have tested the DL algorithm in simulation. Furthermore, a neural network weight combining technique is used which can extract and combine useful dynamics information from multiple robot motion trajectories.more » « less
-
In this paper we propose a landmark-based map localization system for robotic swarms. The proposed system leverages the capabilities of a distributed landmark identification algorithm developed for robotic swarms presented in [1]. The output of the landmark identification consists of a vector of probabilities that each individual robot is looking at a particular landmark in the environment. In this work, this vector is used individually by each component of the swarm to feed the measurement update of a particle filter to estimate the robot location. The system was tested in simulation to validate its performance.more » « less
An official website of the United States government

Full Text Available