skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stephani, Eva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Abrupt thaw of ice‐rich permafrost in the Arctic Foothills yielded to the formation of hillslope erosional features. In the infrastructure corridor, we observed thermal erosion and thaw slumping that self‐healed near an embankment. To advance our understanding of processes between infrastructure and hillslope erosional features (INF‐HEF), we combined climate and remote sensing analyses to field investigations to assess an INF‐HEF system and validate our findings in a broader area along the infrastructure corridor. We identified that thaw consolidation along an embankment formed a thermokarst ditch that was ubiquitous in the broader study area, and which was extensively affected by shrubification and supported other positive feedback (e.g., snow accumulation, water impoundment, and weakened vegetation mat). The thermokarst ditch facilitated channelization of cross‐drainage water, thus increasing the terrain vulnerability to thermal erosion that evolved into thaw slumping after heavy rainfalls. The terrain resilience to thaw slumping benefited from the type of ground ice and topography prevailing at our site. The lateral discontinuity of massive ice in an ice‐wedge polygonal system (i.e., interchange soil and massive ice) compounded to a low‐slope gradient with topographic obstacles (e.g., baydzherakhs) decreased slumping activity and supported self‐stabilization. 
    more » « less
  2. Abstract Riverbank erosion in yedoma regions strongly affects landscape evolution, biogeochemical cycling, sediment transport, and organic and nutrient fluxes to the Arctic Ocean. Since 2006, we have studied the 35‐m‐high Itkillik River yedoma bluff in northern Alaska, whose retreat rate during 1995–2010 was up to 19 m/yr, which is among the highest rates worldwide. This study extends our previous observations of bluff evolution and shows that average bluff‐top retreat rates decreased from 8.7–10.0 m/yr during 2011–2014 to 4.5–5.8 m/yr during 2015–2019, and bluff‐base retreat rates for the same time period decreased from 4.7–7.5 m/yr to 1.3–1.7 m/yr, correspondingly. Bluff evolution initially involves rapid fluvio‐thermal erosion at the base and block collapse, following by slowdown in river erosion and continuing thermal denudation of the retreating headwall with formation of baydzherakhs. Eventually, input of sediment and water from the headwall diminishes, vegetation develops, and slope gradually stabilizes. The step change in the fluvial–geomorphic system has resulted in a 60% decline in the volumetric mobilization of sediment and organic carbon between 2011 and 2019. Our findings stress the importance of sustained observations at key permafrost region study sites to elucidate critical information related to past and potential landscape evolution in the Arctic. 
    more » « less