skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stern, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. Free, publicly-accessible full text available May 1, 2025
  4. Abstract We present the second data release of the Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2). We expand from the equatorial first data release to most of the Dark Energy Camera Legacy Survey area, covering a total area of 6498 deg2. The catalog consists of 133,036 signal-to-noise ratio (S/N) ≥ 5 galaxy cluster candidates at 0.1 ≤z≤ 2, including 6790 candidates atz> 1.5. We train a convolutional neural network (CNN) to identify spurious detections and include CNN-based cluster probabilities in the final catalog. We also compare the MaDCoWS2 sample with literature catalogs in the same area. The larger sample provides robust results that are consistent with our first data release. At S/N ≥ 5, we rediscover 59%–91% of clusters in existing catalogs that lie in the unmasked area of MC2. The median positional offsets are under 250 kpc, and the standard deviation of the redshifts is 0.031(1 +z). We fit a redshift-dependent power law to the relation between MaDCoWS2 S/N and observables from existing catalogs. Over the redshift ranges where the surveys overlap with MaDCoWS2, the lowest scatter is found between S/N and observables from optical/infrared surveys. We also assess the performance of our method using a mock light cone measuring purity and completeness as a function of cluster mass. The purity is above 90%, and we estimate the 50% completeness threshold at a virial mass of log(M/M) ≈ 14.3. The completeness estimate is uncertain due to the small number of massive halos in the light cone, but consistent with the recovery fraction found by comparing to other cluster catalogs. 
    more » « less
  5. Abstract Given a hermitian line bundle on a closed Riemannian manifold , the self‐dual Yang–Mills–Higgs energies are a natural family of functionalsdefined for couples consisting of a section  and a hermitian connection ∇ with curvature . While the critical points of these functionals have been well‐studied in dimension two by the gauge theory community, it was shown in [52] that critical points in higher dimension converge as (in an appropriate sense) to minimal submanifolds of codimension two, with strong parallels to the correspondence between the Allen–Cahn equations and minimal hypersurfaces. In this paper, we complement this idea by showing the Γ‐convergence of to (2π times) the codimension two area: more precisely, given a family of couples with , we prove that a suitable gauge invariant Jacobian converges to an integral ‐cycle Γ, in the homology class dual to the Euler class , with mass . We also obtain a recovery sequence, for any integral cycle in this homology class. Finally, we apply these techniques to compare min‐max values for the ‐area from the Almgren–Pitts theory with those obtained from the Yang–Mills–Higgs framework, showing that the former values always provide a lower bound for the latter. As an ingredient, we also establish a Huisken‐type monotonicity result along the gradient flow of . 
    more » « less
  6. Abstract The Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2) is a new survey designed as the successor of the original MaDCoWS survey. MaDCoWS2 improves upon its predecessor by using deeper optical and infrared data and a more powerful detection algorithm (PZWav). As input to the search, we usegrzphotometry from the DECam Legacy Survey (DECaLS) in combination with W1 and W2 photometry from the CatWISE2020 catalog to derive the photometric redshifts with full redshift probability distribution functions for Wide-field Infrared Survey Explorer (WISE)-selected galaxies. Cluster candidates are then detected using the PZWav algorithm to find three-dimensional galaxy overdensities from the sky positions and photometric redshifts. This paper provides the first MaDCoWS2 data release, covering 1461 (1838 without masking) deg2centered on the Hyper-SuprimeCam Subaru Strategic Program equatorial fields. Within this region, we derive a catalog of 22,970 galaxy cluster candidates detected at a signal-to-noise ratio (S/N) > 5. These clusters span the redshift range 0.1 <z< 2, including 1312 candidates atz> 1.5. We compare MaDCoWS2 to six existing catalogs in the area. We rediscover 60%–92% of the clusters in these surveys at S/N > 5. The medians of the absolute redshift offset are <0.02 relative to these surveys, while the standard deviations are less than 0.06. The median offsets between the detection position from MaDCoWS2 and other surveys are less than 0.25 Mpc. We quantify the relation between S/N and gas mass, total mass, luminosity, and richness from other surveys using a redshift-dependent power law relation. We find that the S/N-richness relation exhibits the lowest scatter. 
    more » « less
  7. Abstract We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs. We previously observed these AGN with Chandra and found no differences between their low-energy X-ray properties and the larger AGN population. However, some models predict differences to be more prominent at energies higher than probed by Chandra. We find that even at the higher energies probed by NuSTAR, the spectra of these AGN are indistinguishable from the larger AGN population. This could rule out models predicting large differences in the X-ray spectra in the NuSTAR bands. Alternatively, it might mean that these three AGN are not binary SMBHs. 
    more » « less
    Free, publicly-accessible full text available April 29, 2025
  8. ABSTRACT Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $$\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys. 
    more » « less
  9. HEX-Pis a probe-class mission concept that will combine high spatial resolution X-ray imaging ( < 1 0 FWHM) and broad spectral coverage (0.2–80 keV) with an effective area superior toNuSTARabove 10 keV to enable revolutionary new insights into a variety of astrophysical problems, especially those related to compact objects, accretion and outflows.HEX-Pwill launch at a time when the sky is being routinely scanned for transient gravitational wave, electromagnetic and neutrino phenomena that will require the capabilities of a sensitive, broadband X-ray telescope for follow up studies. These include the merger of compact objects such as neutron stars and black holes, stellar explosions, and the birth of new compact objects. A response time to target of opportunity observation requests of < 24 hours and a field of regard of 3πsteradians will allowHEX-Pto probe the accretion and ejecta from these transient phenomena through the study of relativistic outflows and reprocessed emission, provide unique capabilities for understanding jet physics, and potentially revealing the nature of the central engine. 
    more » « less