Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The geometry and magnitude of finite strain in the ductile footwalls of metamorphic core complexes are important parameters for testing the predictions of models of extension, yet are often difficult to quantify due to the rare preservation of deformed markers. The footwall of the Northern Snake Range core complex in eastern Nevada preserves a coherent stratigraphy of ductilely thinned Neoproterozoic-Cambrian metasedimentary rocks that are exposed over a 30 km transport-parallel distance, and thus provides an important opportunity to quantify footwall strain. We measured strain ellipsoids from stretched detrital quartz grains and ribbons in 45 samples that span the full exposed distance of the ductilely sheared footwall of the master detachment fault (the Northern Snake Range décollement), and we combined our data with 11 published strain ellipsoids. On the eastern side of the range, where recrystallization limits the preservation of detrital quartz grains, we estimated finite strain by comparing the attenuated thicknesses of Neoproterozoic-Cambrian rock units to their regional stratigraphic thicknesses. Our data demonstrate a dramatic gradient in ductile strain in the transport direction, from 39% subhorizontal extension and 32% subvertical thinning at the western flank of the Northern Snake Range to 450-1440% extension and 81-94% thinning at the eastern flank. The footwall underwent 18-20 km of cumulative ductile extension, which is equivalent to 38-43% of the 47 km of total extension accommodated on brittle structures. Kinematic vorticity estimates from published quartz petrofabrics define an eastward-increasing component of top-to-the-ESE simple shear. Our data are compatible with a rolling hinge model of extension, where displacement on a low-angle, upper-crustal, brittle detachment fault system was fed downward to a zone of distributed, simple shear-dominant, top-down-to-ESE ductile shearing beneath the quartz crystal-plastic transition. The progressive eastward translation and brittle thinning of the hanging wall resulted in the eastward migration of exhumation of footwall rocks. Migrating exhumation may in part be responsible for the eastward-increasing finite strain gradient, as footwall rocks in the eastern part of the range experienced a longer strain history.more » « less
-
Viale, R. (Ed.)Alternative-based approaches to decision making generate overall values for each option in a choice set by processing information within options before comparing options to arrive at a decision. By contrast, attribute-based approaches compare attributes (such as monetary cost and time delay to receipt of a reward) across options and use these attribute comparisons to make a decision. Because they compare attributes, they may not use all available information to make a choice, which categorizes many of them as heuristics. Attribute-based models can better predict choice compared to alternative-based models in some situations (e.g., when there are many options in the choice set, when calculating an overall value for an option is too cognitively taxing). Process data comparing alternative-based and attribute-based processing obtained from eye-tracking and mouse-tracking technology support these findings. Data on attribute-based models thus align with the notion of bounded rationality that people make use of heuristics to make good decisions when under time pressure, informational constraints, and computational constraints. Further study of attribute-based models and processing would enhance our understanding of how individuals process information and make decisions.more » « less
-
Abstract The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.more » « less
-
The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.more » « lessFree, publicly-accessible full text available April 1, 2026
-
ABSTRACT We report the discovery of J0624–6948, a low-surface brightness radio ring, lying between the Galactic Plane and the large magellanic cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ∼196 arcsec. This source has phenomenological similarities to odd radio circles (ORCs). Significant differences to the known ORCs – a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size – suggest that J0624–6948 may be a different type of object. We argue that the most plausible explanation for J0624–6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (30Dor) or the remnant of a nearby stellar super-flare.more » « less
An official website of the United States government

Full Text Available