Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2024
-
Abstract The shrinking of Arctic-wide September sea ice extent is often cited as an indicator of modern climate change; however, the timing of seasonal sea ice retreat/advance and the length of the open-water period are often more relevant to stakeholders working at regional and local scales. Here we highlight changes in regional open-water periods at multiple warming thresholds. We show that, in the latest generation of models from the Coupled Model Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with 2 °C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas. Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open water per year with 3.5 °C warming, and at least 6 months with 5 °C warming. Model bias compared to satellite data suggests that even such dramatic projections may be conservative.
-
Abstract The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness from both radar and lidar altimeters. While information about the mean of this distribution is increasingly available from modelling and remote sensing, the full distribution cannot yet be resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth distribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC, SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the mean snow depth, it can be used in the downscaling of several existing snow depth products for use in flux modelling and altimetry studies.
-
Abstract As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts.
-
Abstract The timing of melt onset in the Arctic plays a key role in the evolution of sea ice throughout Spring, Summer and Autumn. A major catalyst of early melt onset is increased downwelling longwave radiation, associated with increased levels of moisture in the atmosphere. Determining the atmospheric moisture pathways that are tied to increased downwelling longwave radiation and melt onset is therefore of keen interest. We employed Self Organizing Maps (SOM) on the daily sea level pressure for the period 1979–2018 over the Arctic during the melt season (April–July) and identified distinct circulation patterns. Melt onset dates were mapped on to these SOM patterns. The dominant moisture transport to much of the Arctic is enabled by a broad low pressure region stretching over Siberia and a high pressure over northern North America and Greenland. This configuration, which is reminiscent of the North American-Eurasian Arctic dipole pattern, funnels moisture from lower latitudes and through the Bering and Chukchi Seas. Other leading patterns are variations of this which transport moisture from North America and the Atlantic to the Central Arctic and Canadian Arctic Archipelago. Our analysis further indicates that most of the early and late melt onset timings in the Arcticmore »
-
Abstract. Data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition allowed us to investigate the temporal dynamics of snowfall, snow accumulation and erosion in great detail for almost the whole accumulation season (November 2019 to May 2020). We computed cumulative snow water equivalent (SWE) over the sea ice based on snow depth and density retrievals from a SnowMicroPen and approximately weekly measured snow depths along fixed transect paths. We used the derived SWE from the snow cover to compare with precipitation sensors installed during MOSAiC. The data were also compared with ERA5 reanalysis snowfall rates for the drift track. We found an accumulated snow mass of 38 mm SWE between the end of October 2019 and end of April 2020. The initial SWE over first-year ice relative to second-year ice increased from 50 % to 90 % by end of the investigation period. Further, we found that the Vaisala Present Weather Detector 22, an optical precipitation sensor, and installed on a railing on the top deck of research vessel Polarstern, was least affected by blowing snow and showed good agreements with SWE retrievals along the transect. On the contrary, the OTT Pluvio2 pluviometer and the OTT Parsivel2 laser disdrometer were largely affected by windmore »