skip to main content

Title: Arctic open-water periods are projected to lengthen dramatically by 2100
Abstract The shrinking of Arctic-wide September sea ice extent is often cited as an indicator of modern climate change; however, the timing of seasonal sea ice retreat/advance and the length of the open-water period are often more relevant to stakeholders working at regional and local scales. Here we highlight changes in regional open-water periods at multiple warming thresholds. We show that, in the latest generation of models from the Coupled Model Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with 2 °C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas. Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open water per year with 3.5 °C warming, and at least 6 months with 5 °C warming. Model bias compared to satellite data suggests that even such dramatic projections may be conservative.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Communications Earth & Environment
Sponsoring Org:
National Science Foundation
More Like this
  1. Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steadymore »increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea.« less
  2. Diminishing sea ice is impacting the wave field across the Arctic region. Recent observation and model-based studies highlight the spatiotemporal influence of sea ice on offshore wave climatologies, but effects within the nearshore region are still poorly described. This study characterizes the wave climate in the central Beaufort Sea coast from 1979 to 2019 by utilizing a wave hindcast model that uses ERA5 winds, waves, and ice concentrations as input. The spectral wave model SWAN is calibrated and validated based on more than 10,000 in situ measurements collected over a 13-year time period across the region, with friction variations and empirical coefficients for newly implemented empirical ice formulations for the open water season. Model results and trends are analyzed over the 41-year time period using the non-parametric Mann-Kendall test, including an estimate of Sen’s slope. The model results show that the reduction of sea ice concentration correlates strongly with increases in average and extreme wave conditions. In particular, the open water season extended by ~96 days over the 41-year time period (~2.4 days/yr), resulting in a five-fold increase of the yearly cumulative wave power. Moreover, the open water season extends later into the year, resulting in relatively open-water conditions duringmore »fall storms with high wind speeds. The later freeze-up results in an increase of the annual offshore median wave heights of 1% per year and an increase in the average number of rough wave days (defined as days when maximum wave heights exceed 2.5 m) from 1.5 in 1979 to 13.1 days in 2019. Trends in the nearshore areas deviate from the patterns offshore. Model results indicate a non-breaking depth induced saturation limit for high wave heights in the shallow areas of Foggy Island Bay. Similar patterns are found for yearly cumulative wave power.« less
  3. Impacts of a warming climate are amplified in the Arctic. One notorious impact is recent and record-breaking summertime sea-ice loss. Expanding areas of open water and a prolonged ice-free season create opportunity for some industries but challenge indigenous peoples relying on sea ice for transportation and access to food. The observed and projected increase of Arctic maritime activity requires accurate sea-ice forecasts to protect life, environment, and property. Motivated by emerging prediction needs on the operational timescale (≤10 days), this study explores where local indigenous knowledge (LIK) fits into the forecaster toolbox and how it can be woven into useful sea-ice information products. The 2011 spring ice retreat season in the Bering Sea is presented as a forecasting case study. LIK, housed in a database of community-based ice and weather logs, and an ice-ocean forecast model developed by the US Navy are analyzed for their ability to provide information relevant to stakeholder needs. Additionally, metrics for verifying numerical sea-ice forecasts on multiple scales are derived. The model exhibits skill relative to persistence and climatology on the regional scale. At the community scale, we discuss how LIK and new model guidance can enhance public sea-ice information resources.
  4. We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area under the high emissions scenario, a behaviormore »that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2 by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM.« less
  5. Abstract
    The goal of the proposed study is to establish an Arctic Observing Network (AON) for sea surface partial pressure of carbon dioxide (pCO2) and pH in the perennially ice-covered portion of the Arctic Ocean. The carbon cycle is of particular concern in the Arctic because it is unknown how carbon sources and sinks will change in response to warming and the reduction of summer sea ice cover, and whether these changes will lead to increased greenhouse gas accumulation in the atmosphere. Furthermore, the penetration of anthropogenic caron dioxide (CO2) into the Arctic Ocean is leading to acidification with potentially serious consequences for organisms. Little is known about pCO2 and the inorganic carbon cycle in the central Arctic Ocean because most measurement programs to date have focused on the Arctic shelves during the accessible summer period. The investigators propose to use an existing component of the Arctic Observing Network, the Ice-Tethered Profilers (ITP), as platforms for deployment of in situ pCO2 and pH sensors. ITPs are automated profiling systems distributed throughout the perennial Arctic ice pack that telemeter data back to shore: 44 ITPs have been deployed since 2004 and the project is currently slated to continue through 2013. InMore>>