skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sun, Dawei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, a hybrid shared controller is proposed for assisting human novice users to emulate human expert users within a human-automation interaction framework. This work is motivated to let human novice users learn the skills of human expert users using automation as a medium. Automation interacts with human users in two folds: it learns how to optimally control the system from the experts demonstrations by offline computation, and assists the novice in real time without excess amount of intervention based on the inference of the novice’s skill-level within our properly designed shared controller. Automation takes more control authority when the novices skill-level is poor, or it allows the novice to have more control authority when his/her skill-level is close to that of the expert to let the novice learn from his/her own control experience. The proposed scheme is shown to be able to improve the system performance while minimizing the intervention from the automation, which is demonstrated via an illustrative human-in-the-loop application example. 
    more » « less
  2. In this paper, we propose a human-automation interaction scheme to improve the task performance of novice human users with different skill levels. The proposed scheme includes two interaction modes: learn from experts mode and assist novices mode. In the learn from experts mode, the automation learns from a human expert user such that the awareness of task objective is obtained. Based on the learned task objective, in the assist novices mode, the automation customizes its control parameter to assist a novice human user towards emulating the performance of the expert human user. We experimentally test the proposed human-automation scheme in a designed quadrotor simulation environment, and the results show that the proposed approach is capable of adapting to and assisting the novice human user to achieve the performance that emulates the expert human user. 
    more » « less
  3. null (Ed.)
  4. Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios. 
    more » « less
  5. null (Ed.)