Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
Tackling High-Dimensional Tensor Clustering In the paper “Jointly Modeling and Clustering Tensors in High Dimensions,” Cai, Zhang, and Sun address the challenge of jointly modeling and clustering tensors by introducing a high-dimensional tensor mixture model with heterogeneous covariances. The proposed mixture model exploits the intrinsic structures of tensor data. The authors develop a computationally efficient high-dimensional expectation conditional maximization (HECM) algorithm and show that the HECM iterates, with an appropriate initialization, converge geometrically to a neighborhood that is within statistical precision of the true parameter. The theoretical analysis is nontrivial because of the dual nonconvexity arising from both the expectation maximization-type estimation and the nonconvex objective function in the M step. They also study the convergence rate of the algorithm when the number of clusters is overspecified and when the signal-to-noise ratio diminishes with sample size. The efficacy of the proposed method is demonstrated through numerical experiments and a real-world medical data application.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 3, 2026
-
Free, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available April 3, 2026
-
Contextual dynamic pricing aims to set personalized prices based on sequential interactions with customers. At each time period, a customer who is interested in purchasing a product comes to the platform. The customer’s valuation for the product is a linear function of contexts, including product and customer features, plus some random market noise. The seller does not observe the customer’s true valuation, but instead needs to learn the valuation by leveraging contextual information and historic binary purchase feedback. Existing models typically assume full or partial knowledge of the random noise distribution. In this paper, we consider contextual dynamic pricing with unknown random noise in the linear valuation model. Our distribution-free pricing policy learns both the contextual function and the market noise simultaneously. A key ingredient of our method is a novel perturbed linear bandit framework, in which a modified linear upper confidence bound algorithm is proposed to balance the exploration of market noise and the exploitation of the current knowledge for better pricing. We establish the regret upper bound and a matching lower bound of our policy in the perturbed linear bandit framework and prove a sublinear regret bound in the considered pricing problem. Finally, we demonstrate the superior performance of our policy on simulations and a real-life auto loan data set. Funding: Y. Liu and W.W. Sun acknowledge support from the National Science Foundation Division of Social and Economic Sciences [Grant NSF-SES 2217440]. Supplemental Material: The supplementary material is available at https://doi.org/10.1287/moor.2023.1369 .more » « less
An official website of the United States government

Full Text Available