Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Local and regional‐scaled studies point to the important role of lake type (natural lakes vs. reservoirs), surface water connectivity, and ecological context (multi‐scaled natural settings and human factors) in mediating lake responses to disturbances like drought. However, we lack an understanding at the macroscale that incorporates multiple scales (lake, watershed, region) and a variety of ecological contexts. Therefore, we used data from the LAGOS‐US research platform and applied a local water year timeframe to 62,927 US natural lakes and reservoirs across 17 ecoregions to examine how chlorophyllaresponds to drought across various ecological contexts. We evaluated chlorophyllachanges relative to each lake's baseline and drought year. Drought led to lower and higher chlorophyllain 18% and 20%, respectively, of lakes (both natural lakes and reservoirs included). Natural lakes had higher magnitudes of change and probabilities of increasing chlorophylladuring droughts than reservoirs, and these differences were particularly pronounced in isolated and highly‐connected lakes. Drought responses were also related to long‐term average lake chlorophyllain complex ways, with a positive correlation in less productive lakes and a negative correlation in more productive lakes, and more pronounced drought responses in higher‐productivity lakes than lower‐productivity lakes. Thus, lake chlorophyll responses to drought are related to interactions between lake type and surface connectivity, long‐term average chlorophylla, and many other multi‐scaled ecological factors (e.g., soil erodibility, minimum air temperature). These results reinforce the importance of integrating multi‐scaled ecological context to determine and predict the impacts of global changes on lakes.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Distinct from familiar -, -, or -wave pairings, the monopole superconducting order represents a novel class of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example, doped Weyl semimetal systems. However, the phase of monopole pairing order is not well-defined over an entire Fermi surface, making it challenging to design experiments sensitive to both its symmetry and topology. To address this, we propose a scheme based on symmetry and topological principles to identify this elusive pairing order through a set of phase-sensitive Josephson experiments. By examining the discrepancy between global and local angular momentum of the pairing order, we can unveil the monopole charge of the pairing order, including for models with higher pair monopole charge , and 3. We demonstrate the proposed probe of monopole pairing order through analytic and numerical studies of Josephson coupling in models of monopole superconductor junctions. This work opens a promising avenue to uncover the unique topological properties of monopole pairing orders and to distinguish them from known pairing orders based on spherical harmonic symmetry. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 22, 2025
- 
            Abstract Quantifying and predicting precipitation and water flow and their influences is challenged by the dynamic relationships between and timing of precipitation and water fluxes. To help with these challenges, scientists use “water year” to examine and predict the impacts of precipitation and relevant extreme climatic and hydrological events on ecosystems. However, traditional water year definitions used in the US lack a consideration of areal variation in climate and hydrology, which is needed when studying ecosystems at regional or national scales. We developed local water year (LWY) values that consider spatial variation using existing definitions whereby the water year begins in the month with the lowest or highest average monthly streamflow. We employed spatial interpolation to assign LWY start and end months to 202 subregions across the conterminous United States that range from 4,384 to 134,755 km2. This dataset can be linked with diverse climate, terrestrial, and aquatic data for broad‐scale studies.more » « less
- 
            Abstract Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophylla(Chla) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chlaconcentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.more » « less
- 
            Abstract The future of our planet relies on scientists' ability to effectively translate knowledge into action, and researchers have an imperative commitment to leverage their understanding. As aquatic early career researchers (ECRs), we draw upon personal experiences to share our learnings about how individuals can drive change. We showcase diverse approaches for ECRs to create meaningful impacts by connecting with other researchers, broader society, and decision‐makers. At the same time, institutional challenges inhibit scientific engagement beyond academia, particularly for ECRs. Such barriers include (1) lack of value and support for engagement activities, (2) limited training opportunities, (3) research siloes, and (4) rigid funding structures. We offer potential systemic solutions, from developing and adopting new performance metrics for academic researchers to enhanced flexibility with grant timelines and spending. Academic systems need to change and so does the way scientists engage. Our future depends on it.more » « less
- 
            Abstract The distinct molecular states — single molecule, assembly, and aggregate — of two ionic macromolecules, TPPE‐APOSS and TPE‐APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation‐induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions‐controlled blackberry‐type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE‐APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength.more » « less
- 
            We report herein that dendron-shaped macromolecules AB n crystallize into well-ordered pyramid-like structures from mixed solvents, instead of spherical motifs with curved structures, as found in the bulk. The design of the asymmetric molecular architecture and the choice of mixed solvents are applied as strategies to manipulate the crystallization process. In mixed solvents, the solvent selection for the Janus macromolecule and the existence of dominant crystalline clusters contribute to the formation of flat nanosheets. Whereas during solvent evaporation, the bulkiness of the asymmetric macromolecules easily creates defects within 2D nanosheets which lead to their spiral growth through screw dislocation. The size of the nanosheets and the growth into 2D nanosheets or 3D pyramidal structures can be regulated by the solvent ratio and solvent compositions. Moreover, macromolecules of higher asymmetry generate polycrystals of lower orderliness, probably due to higher localized stress.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
