This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair . Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, and , with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity. © 2024 CERN, for the ALICE Collaboration2024CERN
more »
« less
This content will become publicly available on November 22, 2025
Designing phase sensitive probes of monopole superconducting order
Distinct from familiar -, -, or -wave pairings, the monopole superconducting order represents a novel class of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example, doped Weyl semimetal systems. However, the phase of monopole pairing order is not well-defined over an entire Fermi surface, making it challenging to design experiments sensitive to both its symmetry and topology. To address this, we propose a scheme based on symmetry and topological principles to identify this elusive pairing order through a set of phase-sensitive Josephson experiments. By examining the discrepancy between global and local angular momentum of the pairing order, we can unveil the monopole charge of the pairing order, including for models with higher pair monopole charge , and 3. We demonstrate the proposed probe of monopole pairing order through analytic and numerical studies of Josephson coupling in models of monopole superconductor junctions. This work opens a promising avenue to uncover the unique topological properties of monopole pairing orders and to distinguish them from known pairing orders based on spherical harmonic symmetry. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 1848349
- PAR ID:
- 10556854
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the boson mass: , the most precise value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
A search for the nonresonant production of Higgs boson pairs in the channel is performed using of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifier and of the quartic ( ) coupling modifier . No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of ( ) and ( ), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
-
Formulating order metrics that sensitively quantify the degree of order/disorder in many-particle systems in -dimensional Euclidean space across length scales is an outstanding challenge in physics, chemistry, and materials science. Since an infinite set of -particle correlation functions is required to fully characterize a system, one must settle for a reduced set of structural information, in practice. We initiate a program to use the local number variance associated with a spherical sampling window of radius (which encodes pair correlations) and an integral measure derived from it that depends on two specified radial distances and . Across the first three space dimensions ( ), we find these metrics can sensitively describe and categorize the degree of order/disorder of 41 different models of antihyperuniform, nonhyperuniform, disordered hyperuniform, and ordered hyperuniform many-particle systems at a specified length scale . Using our local variance metrics, we demonstrate the importance of assessing order/disorder with respect to a specific value of . These local order metrics could also aid in the inverse design of structures with prescribed length-scale-specific degrees of order/disorder that yield desired physical properties. In future work, it would be fruitful to explore the use of higher-order moments of the number of points within a spherical window of radius [S. Torquato , ] to devise even more sensitive order metrics. Published by the American Physical Society2024more » « less
-
The relation between the pion's quark distribution function, , its light-front wave function, and the elastic charge form factor, , is explored. The square of the leading-twist pion wave function at a special probe scale, , is determined using models and Poincaré covariance from realistic results for . This wave function is then used to compute form factors with the result that the Drell-Yan-West and quark counting relationships are not satisfied. A new relationship between and is proposed. Published by the American Physical Society2024more » « less