Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Generative AI (GenAI) has brought opportunities and challenges for higher education as it integrates into teaching and learning environments. As instructors navigate this new landscape, understanding their engagement with and attitudes toward GenAI is crucial. We surveyed 178 instructors from a single U.S. university to examine their current practices, perceptions, trust, and distrust of GenAI in higher education in March 2024. While most surveyed instructors reported moderate to high familiarity with GenAI-related concepts, their actual use of GenAI tools for direct instructional tasks remained limited. Our quantitative results show that trust and distrust in GenAI are related yet distinct; high trust does not necessarily imply low distrust, and vice versa. We also found significant differences in surveyed instructors' familiarity with GenAI across different trust and distrust groups. Our qualitative results show nuanced manifestations of trust and distrust among surveyed instructors and various approaches to support calibrated trust in GenAI. We discuss practical implications focused on (dis)trust calibration among instructors.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available November 2, 2025
-
Visualization design studies bring together visualization researchers and domain experts to address yet unsolved data analysis challenges stemming from the needs of the domain experts. Typically, the visualization researchers lead the design study process and implementation of any visualization solutions. This setup leverages the visualization researchers’ knowledge of methodology, design, and programming, but the availability to synchronize with the domain experts can hamper the design process. We consider an alternative setup where the domain experts take the lead in the design study, supported by the visualization experts. In this study, the domain experts are computer architecture experts who simulate and analyze novel computer chip designs. These chips rely on a Network-on-Chip (NOC) to connect components. The experts want to understand how the chip designs perform and what in the design led to their performance. To aid this analysis, we develop Vis4Mesh, a visualization system that provides spatial, temporal, and architectural context to simulated NOC behavior. Integration with an existing computer architecture visualization tool enables architects to perform deep-dives into specific architecture component behavior. We validate Vis4Mesh through a case study and a user study with computer architecture researchers. We reflect on our design and process, discussing advantages, disadvantages, and guidance for engaging in a domain expert-led design studies.more » « less
-
null (Ed.)In the study of gene expression data, network analysis has played a uniquely important role. To accommodate the high dimensionality and low sample size and generate interpretable results, regularized estimation is usually conducted in the construction of gene expression Gaussian Graphical Models (GGM). Here we use GeO‐GGM to represent gene‐expression‐only GGM. Gene expressions are regulated by regulators. gene‐expression‐regulator GGMs (GeR‐GGMs), which accommodate gene expressions as well as their regulators, have been constructed accordingly. In practical data analysis, with a “lack of information” caused by the large number of model parameters, limited sample size, and weak signals, the construction of both GeO‐GGMs and GeR‐GGMs is often unsatisfactory. In this article, we recognize that with the regulation between gene expressions and regulators, the sparsity structures of a GeO‐GGM and its GeR‐GGM counterpart can satisfy a hierarchy. Accordingly, we propose a joint estimation which reinforces the hierarchical structure and use the construction of a GeO‐GGM to assist that of its GeR‐GGM counterpart and vice versa. Consistency properties are rigorously established, and an effective computational algorithm is developed. In simulation, the assisted construction outperforms the separation construction of GeO‐GGM and GeR‐GGM. Two The Cancer Genome Atlas data sets are analyzed, leading to findings different from the direct competitors.more » « less
-
null (Ed.)In response to COVID-19, a vast number of visualizations have been created to communicate information to the public. Information exposure in a public health crisis can impact people’s attitudes towards and responses to the crisis and risks, and ultimately the trajectory of a pandemic. As such, there is a need for work that documents, organizes, and investigates what COVID-19 visualizations have been presented to the public. We address this gap through an analysis of 668 COVID-19 visualizations. We present our findings through a conceptual framework derived from our analysis, that examines who, (uses) what data, (to communicate) what messages, in what form, under what circumstances in the context of COVID-19 crisis visualizations. We provide a set of factors to be considered within each component of the framework. We conclude with directions for future crisis visualization research.more » « less