Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given an abelian variety over a number field, its Sato–Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the -function of the abelian variety. It was previously shown by Fité, Kedlaya, Rotger, and Sutherland that there are 52 groups (up to conjugation) that occur as Sato–Tate groups of abelian surfaces over number fields; we show here that for abelian threefolds, there are 410 possible Sato–Tate groups, of which 33 are maximal with respect to inclusions of finite index. We enumerate candidate groups using the Hodge-theoretic construction of Sato–Tate groups, the classification of degree-3 finite linear groups by Blichfeldt, Dickson, and Miller, and a careful analysis of Shimura’s theory of CM types that rules out 23 candidate groups; we cross-check this using extensive computations inGAP,SageMath, andMagma. To show that these 410 groups all occur, we exhibit explicit examples of abelian threefolds realizing each of the 33 maximal groups; we also compute moments of the corresponding distributions and numerically confirm that they are consistent with the statistics of the associated -functions.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract We present an efficient algorithm to compute the Euler factor of a genus 2 curve$$C/\mathbb {Q}$$ at an odd primepthat is of bad reduction forCbut of good reduction for the Jacobian ofC(a prime of “almost good” reduction). Our approach is based on the theory of cluster pictures introduced by Dokchitser, Dokchitser, Maistret, and Morgan, which allows us to reduce the problem to a short, explicit computation over$$\mathbb {Z}$$ and$$\mathbb {F}_p$$ , followed by a point-counting computation on two elliptic curves over$$\mathbb {F}_p$$ , or a single elliptic curve over$$\mathbb {F}_{p^2}$$ . A key feature of our approach is that we avoid the need to compute a regular model forC. This allows us to efficiently compute many examples that are infeasible to handle using the algorithms currently available in computer algebra systems such as Magma and Pari/GP.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p . We address both the case where X is defined over $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O ( N ) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest.more » « less
An official website of the United States government
