skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sw"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Jentschel, M (Ed.)
    Nuclear shape coexistence is a widespread but not yet well understood phenomenon. Electric monopole (E0) transitions are a particularly sensitive probe of shape coexistence. The firstE0measurements on the Cr isotopes were performed at The Australian National University, but were hampered by missing and imprecise data of the key spectroscopic quantities such as level lifetimes. To address these needs, the low-lying states in52Cr were investigated at the University of Kentucky Accelerator Laboratory with inelastic neutron scattering. γ-ray angular distribution and excitation function measurements were performed to determine level lifetimes, spins and parities, transition mixing ratios, and γ-ray branching ratios. We present new level lifetimes for three states in52Cr along with the implications for E0 transition strengths and shape coexistence in52Cr. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Jentschel, M (Ed.)
    Neutron elastic scattering cross sections on natural carbon serve as a reference standard in the incident energy range 10 eV to 1.8 MeV. The 2017 standards evaluation [1, 2] is 0.5 to 2.0% higher in that energy range than the 2006 standards evaluation [3]. In addition the ENDF/B-VIII.0 release split the natural carbon cross sections into the isotopes12C,13C, and14C for the first time. These details call for the re-measurement of the13C cross sections in sensitive regions. Ten elastic scattering angular distributions were recently measured for incident neutron energies between 0.5 and 3.25 MeV at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) using nanosecond pulsed beams and time-of-flight techniques. An overview of neutron production and detection, the new digital data acquisition system, and data analysis will be presented. Results are compared with data from previous measurements and database evaluations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Nanoparticle drug-delivery systems (NP DDS) have proven to be tremendously impactful for delivering therapeutic agents in cancer treatments, vaccinations, gene therapy, and diagnostics, and enabled agents such as RNA therapeutics. However, the exposure of NP DDS to biological milieus leads to the rapid adsorption of proteins and other molecules, forming a proteinaceous corona that obscures NP surface characteristics and controls the biological interactions of the NP DDS. Surface modifications, including poly(ethylene glycol) (PEG) and synthetic zwitterionic polymers, reduce protein adsorption yet lack monomer-scale tunability, have off-target immunological effects, and suffer from targeting-limited steric hindrance, altogether motivating the development of alternative approaches. Peptides can uniquely form many zwitterions and have shown promise in reducing and controlling the NP protein corona as a function of the peptide sequence. However, the impact of zwitterionic peptides (ZIPs) on the drug-delivery properties of polymeric NPs has not been explored. In this work, diverse ZIPs computationally predicted to reduce protein adsorption by assessing peptide–peptide β-strand interaction energies were conjugated to pH-responsive cationic NPs. The resulting ZIP-NP conjugates exhibited up to 88% reduced protein adsorption and a range of siRNA-mediated gene knockdown that correlates with interaction energies. These data suggest that the peptide–peptide interaction energy is a promising design parameter for ZIPs for further model development. ZIP-NP also exhibited sequence-dependent variations in cellular uptake and circulation half-life, indicating that ZIP-NPs are suitable for tuning and improving NP drug-delivery characteristics. 
    more » « less
  6. Rusănescu, C; Ungureanu, N (Ed.)
    Excessive land application of poultry litter (PL) may lead to surface runoff of nitrogen (N) and phosphorus (P), which cause eutrophication, fish death, and water pollution that ultimately have negative effects on humans and animals. Increases in poultry production in the Delmarva Peninsula underscore the need for more efficient, cost-effective, and sustainable disposal technologies for processing PL instead of direct land application. The pyrolysis conversion process can potentially produce nutrient-rich poultry litter biochar (PLB), while the pyrolysis process can change the N and P to a more stable component, thus reducing its runoff. Pyrolysis also kills off any microorganisms that would otherwise trigger negative environmental health effects. This study is to apply an integrated method and investigate the effect of pyrolysis temperature (300 °C, 500 °C), poultry litter source (different feedstock composition), and bedding material mixture (10% pine shavings) on PLB qualities and quantities. Proximate and ultimate analysis showed PL sources and bedding material addition influenced the physicochemical properties of feedstock. The SEM and BET surface results indicate that pyrolysis temperature had a significant effect on changing the PLB morphology and structure, as well as the pH value (7.78 at 300 °C vs. 8.78 at 500 °C), extractable phosphorus (P) (18.73 ppm at 300 °C vs. 11.72 ppm at 500 °C), sulfur (S) (363 ppm at 300 °C vs. 344 ppm at 500 °C), and production yield of PLBs (47.65% at 300 °C vs. 60.62% at 500 °C). The results further suggest that adding a bedding material mixture (10% pine shavings) to PLs improved qualities by reducing the content of extractable P and S, as well as pH values of PLBs. This study also found the increment in both the pore volume and the area of Bethel Farm was higher than that of Sun Farm. Characterization and investigation of qualities and quantities of PLB using the integrated framework suggest that PL from Bethel Farm could produce better-quality PLB at a higher pyrolysis temperature and bedding material mixture to control N and P runoff problems. 
    more » « less
  7. Abstract Two‐dimentional magnets are of significant interest both as a platform for exploring novel fundamental physics and for their potential in spintronic and optoelectronic devices. Recent bulk magnetometry studies have indicated a weak ferromagnetic response in tungsten disulfide (WS2), and theoretical predictions suggest edge‐localized magnetization in flakes with partial hydrogenation. Here, room‐temperature wide‐field quantum diamond magnetometry to image pristine and Fe‐implanted WS2flakes of varying thicknesses (45–160 nm), exfoliated from bulk crystals and transferred to NV‐doped diamond substrates, is used. Direct evidence of edge‐localized stray magnetic fields, which scale linearly with applied external magnetic field (4.4–220 mT), reaching up to ±4.7 µT, is observed. The edge signal shows a limited dependence on the flake thickness, consistent with dipolar field decay and sensing geometry. Magnetic simulations using five alternative models favor the presence of edge magnetization aligned along an axis slightly tilted from the normal to the WS2flake's plane, consistent with spin canting in antiferromagnetically coupled edge states. Thses findings establish WS2as a promising platform for edge‐controlled 2D spintronics. 
    more » « less
  8. A high-statistics \(\beta \)-decay experiment was conducted at the TRIUMF-ISAC facility using the \(8\pi \) \(\gamma \)-ray spectrometer and its ancillary detectors to study the low-spin structure of \(^{98}\)Zr. The analysis of \(\gamma \)–\(\gamma \) and \(e^-\)–\(\gamma \) coincidence data is presented. New measurements of \(\gamma \)-ray branching ratios and mixing ratios are reported for four \(J^{\pi } = 2^+\) states located above 2 MeV excitation energy in \(^{98}\)Zr. Based on these measurements, ratios of \(B\)(E2) values for transitions to lower-lying levels are determined, highlighting the preferential decay paths of these \(2^+\) states. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  9. Signals from satellites are a source of interference to radio telescopes. One possible scheme for mitigation of this interference is coherent time-domain canceling. Using a simple but broadly-applicable model for the antenna pattern, we show how the antenna pattern combined with the motion of the satellite limits the time available to compute an accurate estimate of the interference waveform, which subsequently limits the extent to which interference can be canceled in the output. We suggest a simple remedy to the problem. 
    more » « less