skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swaminathan, Adith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem – allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods. 
    more » « less
  2. In recent years, a new line of research has taken an interventional view of recommender systems, where recommendations are viewed as actions that the system takes to have a desired effect. This interventional view has led to the development of counterfactual inference techniques for evaluating and optimizing recommendation policies. This article explains how these techniques enable unbiased offline evaluation and learning despite biased data, and how they can inform considerations of fairness and equity in recommender systems. 
    more » « less
  3. The REVEAL workshop1 focuses on framing the recommendation problem as a one of making personalized interventions, e.g. deciding to recommend a particular item to a particular user. Moreover, these interventions sometimes depend on each other, where a stream of interactions occurs between the user and the system, and where each decision to recommend something will have an impact on future steps and long-term rewards. This framing creates a number of challenges we will discuss at the workshop. How can recommender systems be evaluated offline in such a context? How can we learn recommendation policies that are aware of these delayed consequences and outcomes? 
    more » « less