skip to main content

Search for: All records

Creators/Authors contains: "Swarup, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on casesmore »by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.« less
  2. Reopening of colleges and universities for the Fall semester of 2020 across the United States has caused signi ficant COVID-19 case spikes, requiring reactive responses such as temporary closures and switching to online learning. Until sufficient levels of immunity are reached through vaccination, Institutions of Higher Education will need to balance academic operations with COVID-19 spread risk within and outside the student community. In this work, we study the impact of proximity statistics obtained from high resolution mobility traces in predicting case rate surges in university counties. We focus on 50 land-grant university counties (LGUCs) across the country and showmore »high correlation (PCC > 0.6) between proximity statistics and COVID-19 case rates for several LGUCs during the period around Fall 2020 reopenings. These observations provide a lead time of up to 3 weeks in preparing resources and planning containment efforts. We also show how features such as total population, population affiliated with university, median income and case rate intensity could explain some of the observed high correlation. We believe these easily explainable mobility metrics along with other disease surveillance indicators can help universities be better prepared for the Spring 2021 semester.« less
  3. Disease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID- 19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics. We propose a recurrent message passing graph neural network that embeds spatio-temporal disease dynamics and human mobility dynamics for daily state-level new confirmed cases forecasting. This work represents one of the early papers onmore »the use of GNNs to forecast COVID-19 incidence dynamics and our methods are competitive to existing methods. We show that the spatial and temporal dynamic mobility graph leveraged by the graph neural network enables better long-term forecasting performance compared to baselines.« less
  4. This work quanti es mobility changes observed during the di erent phases of the pandemic world-wide at multiple resolutions { county, state, country { using an anonymized aggregate mobility map that captures population ows between geographic cells of size 5 km2. As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in ows. Further, in order to understand mixing within a region, we propose a new metric to quantify the e ect of social distancingmore »on the basis of mobility.Taking two very di erent countries sampled from the global spectrum, We analyze in detail the mobility patterns of the United States (US) and India. We then carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. Finally, we quantify the e ect of college students returning back to school for the fall semester on COVID-19 dynamics in the surrounding community. We employ the data from a recent university outbreak (reported on August 16, 2020) to infer possible Re values and mobility ows combined with daily prevalence data and census data to obtain an estimate of new cases that might arrive on a college campus. We nd that maintaining social distancing at existing levels would be e ective in mitigating the extra seeding of cases. However, potential behavioral change and increased social interaction amongst students (30% increase in Re ) along with extra seeding can increase the number of cases by 20% over a period of one month in the encompassing county. To our knowledge, this work is the rst to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.« less