Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper presents a novel parametric scattering model (PSM) for sensing extended targets in integrated sensing and communication (ISAC) systems. The PSM addresses the limitations of traditional models by efficiently capturing the target’s angular characteristics through a compact set of key parameters, including the central angle and angular spread, enabling efficient optimization. Based on the PSM, we first derive the Cram´er-Rao bound (CRB) for parameter estimation and then propose a beamforming design algorithm to minimize the CRB while meeting both communication signal-to-interference-plusnoise ratio (SINR) and power constraints. By integrating the PSM into the beamforming optimization process, the proposed framework achieves superior CRB performance while balancing the tradeoff between sensing accuracy and communication quality. Simulation results demonstrate that the PSM-based approach consistently outperforms traditional unstructured and discrete scattering models, particularly in resource-limited scenarios, highlighting its practical applicability and scalability.more » « lessFree, publicly-accessible full text available May 3, 2026
- 
            A promising type of Reconfigurable Intelligent Surface (RIS) employs tunable control of its varactors using biasing transmission lines below the RIS reflecting elements. Biasing standing waves (BSWs) are excited by a time-periodic signal and sampled at each RIS element to create a desired biasing voltage and control the reflection coefficients of the elements. A simple rectifier can be used to sample the voltages and capture the peaks of the BSWs over time. Like other types of RIS, attempting to model and accurately configure a wave-controlled RIS is extremely challenging due to factors such as device non-linearities, frequency dependence, element coupling, etc., and thus significant differences will arise between the actual and assumed performance. An alternative approach to solving this problem is data-driven: Using training data obtained by sampling the reflected radiation pattern of the RIS for a set of BSWs, a neural network (NN) is designed to create an input-output map between the BSW amplitudes and the resulting sampled radiation pattern. This is the approach discussed in this paper. In the proposed approach, the NN is optimized using a Genetic Algorithm (GA) to minimize the error between the estimated and measured radiation patterns. The BSW amplitudes are then designed via Simulated Annealing (SA) to optimize a signal-to-leakage-plus-noise ratio measure by iteratively forward-propagating the BSW amplitudes through the NN and using its output as feedback to determine convergence. The resulting optimal solutions are stored in a lookup table to be used both as settings to instantly configure the RIS and as a basis for determining more complex radiation patterns.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            This article investigates block-level interference exploitation (IE) precoding for multiuser multiple-input-single-output (MU-MISO) downlink systems. To overcome the need for symbol-level IE precoding to frequently update the precoding matrix, we propose to jointly optimize all the precoders or transmit signals within a transmission block. The resultant precoders only need to be updated once per block, and while not necessarily constant over all the symbol slots, we refer to the technique as block-level slot-variant IE precoding. Through a careful examination of the optimal structure and the explicit duality inherent in block-level power minimization (PM) and signal-to-interference-plus-noise ratio (SINR) balancing (SB) problems, we discover that the joint optimization can be decomposed into subproblems with smaller variable sizes. As a step further, we propose block-level slot-invariant IE precoding by adding a structural constraint on the slot-variant IE precoding to maintain a constant precoder throughout the block. A novel linear precoder for IE is further presented, and we prove that the proposed slot-variant and slot-invariant IE precoding share an identical solution when the number of symbol slots does not exceed the number of users. Numerical simulations demonstrate that the proposed precoders achieve a significant complexity reduction compared against benchmark schemes, without sacrificing performance.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            While reconfigurable intelligent surface (RIS) technology shows great promise for wireless communication, an adversary using such technology can threaten wireless performance. This paper explores an RIS-based attack on time-division duplex (TDD) based wireless systems that use channel reciprocity for physical layer key generation (PLKG). We demonstrate that deploying a non-reciprocal RIS with a non-symmetric "beyond diagonal" (BD) phase shift matrix can compromise channel reciprocity and thus break key consistency. The attack can be achieved without transmission of signal energy, channel state information (CSI), and synchronization with the legitimate system, and thus it is difficult to detect and counteract. We propose a physically consistent BD-RIS model and verify the impact of its attack on the secret key rate (SKR) of the legitimate system via simulations. Moreover, we provide a heuristic approach for optimizing the BD-RIS configuration to realize a more severe attack in cases where some partial knowledge of the channel state information is available. Our results demonstrate that such channel reciprocity attacks can significantly decrease the SKR of the legitimate system.more » « less
- 
            Integrated sensing and communication (ISAC) systems traditionally presuppose that sensing and communication (S&C) channels remain approximately constant during their coherence time. However, a “DISCO” reconfigurable intelligent surface (DRIS), i.e., an illegitimate RIS with random, time-varying reflection properties that acts like a “disco ball,” introduces a paradigm shift that enables active channel aging more rapidly during the channel coherence time. In this letter, we investigate the impact of DISCO jamming attacks launched by a DRIS-based fully-passive jammer (FPJ) on an ISAC system. Specifically, an ISAC problem formulation and a corresponding waveform optimization are presented in which the ISAC waveform design considers the trade-off between the S&C performance and is formulated as a Pareto optimization problem. Moreover, a theoretical analysis is conducted to quantify the impact of DISCO jamming attacks. Numerical results are presented to evaluate the S&C performance under DISCO jamming attacks and to validate the derived theoretical analysis.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Reconfigurable intelligent surface (RIS) technology, given its ability to favorably modify wireless communication environments, will play a pivotal role in the evolution of future communication systems. This paper proposes rate maximization techniques for both single-user and multiuser MIMO systems, based on the well-known weighted minimum mean square error (WMMSE) criterion. Using a suitable weight matrix, the WMMSE algorithm tackles an equivalent weighted mean square error (WMSE) minimization problem to achieve the sum-rate maximization. By considering a more practical RIS system model that employs a tensor-based representation enforced by the electromagnetic behavior exhibited by the RIS panel, we detail both the sum-rate maximizing and WMSE minimizing strategies for RIS phase shift optimization by deriving the closed-form gradient of the sum-rate and the WMSE with respect to the RIS phase shift vector. Our simulations reveal that the proposed rate maximization technique, rooted in the WMMSE algorithm, exhibits superior performance when compared to other benchmarks.more » « less
- 
            Downlink reconfigurable intelligent surface (RIS)-assisted multi-input-multi-output (MIMO) systems are considered with far-field, near-field, and hybrid-far-near-field channels. According to the angular or distance information contained in the received signals, 1) a distance-based codebook is designed for near-field MIMO channels, based on which a hierarchical beam training scheme is proposed to reduce the training overhead; 2) a combined angular-distance codebook is designed for hybrid-far-near-field MIMO channels, based on which a two-stage beam training scheme is proposed to achieve alignment in the angular and distance domains separately. For maximizing the achievable rate while reducing the complexity, an alternating optimization algorithm is proposed to carry out the joint optimization iteratively. Specifically, the RIS coefficient matrix is optimized through the beam training process, the optimal combining matrix is obtained from the closed-form solution for the mean square error (MSE) minimization problem, and the active beamforming matrix is optimized by exploiting the relationship between the achievable rate and MSE. Numerical results reveal that: 1) the proposed beam training schemes achieve near-optimal performance with a significantly decreased training overhead; 2) compared to the angular-only far-field channel model, taking the additional distance information into consideration will effectively improve the achievable rate when carrying out beam design for near-field communications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
