As the climate has warmed, many birds have advanced their breeding timing. However, as climate change also changes temperature distributions, breeding earlier might increase nestling exposure to either extreme heat or cold. Here, we combine >300,000 breeding records from 24 North American birds with historical temperature data to understand how exposure to extreme temperatures has changed. Average spring temperature increased since 1950 but change in timing of extremes was inconsistent in direction and magnitude; thus, populations could not track both average and extreme temperatures. Relative fitness was reduced following heatwaves and cold snaps in 11 and 16 of 24 species, respectively. Latitudinal variation in sensitivity in three widespread species suggests that vulnerability to extremes at range limits may contribute to range shifts. Our results add to evidence demonstrating that understanding individual sensitivity and its links to population level processes is critical for predicting vulnerability to changing climates.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Life history theory provides a framework for understanding how trade-offs generate negative trait associations. Among nestling birds, time spent in the nest, risk of predation, and lifespan covary, but some associations are only found within species while others are only observed between species. A recent comparative study suggests that allocation trade-offs may be alleviated by disinvestment in ephemeral traits, such as nest-grown feathers, that are quickly replaced. However, direct resource allocation trade-offs cannot be inferred from interspecific trait associations without complementary intraspecific studies. Here, we asked whether there is evidence for a within-species allocation trade-off between feather quality and time spent in the nest in Tree Swallows (Tachycineta bicolor). Consistent with the idea that ephemeral traits are deprioritized, nest-grown feathers had lower barb density than adult feathers. However, despite substantial variation in fledging age among nestlings, there was no evidence for a negative association between time in the nest and feather quality. Furthermore, accounting for differences in resource availability by considering provisioning rate and a nest predation treatment did not reveal a trade-off that was masked by variation in resources. Our results are most consistent with the idea that the interspecific association between development and feather quality arises from adaptive specialization, rather than from a direct allocation trade-off.
-
Abstract The risk of predation directly affects the physiology, behavior, and fitness of wild birds. Strong social connections with conspecifics could help individuals recover from a stressful experience such as a predation event; however, competitive interactions also have the potential to exacerbate stress. Few studies have investigated the interaction between environmental stressors and the social landscape in wild bird populations. In 2 years of field studies, we experimentally simulated predation attempts on breeding female tree swallows (
Tachicyneta bicolor ). At the same time, we manipulated female breast plumage color, a key social signal. Simulated predation events on tree swallows early in the nestling period reduced young nestlings' mass by approximately 20% and shortened telomere lengths. Ultimately, only 31% of nestlings in the predation group fledged compared with 70% of control nestlings. However, the effects of experimental manipulations were timing dependent: the following year when we swapped the order of the experimental manipulations and simulated predation during incubation, there were no significant effects of predation on nestling condition or fledging success. Contrary to our expectations, manipulation of the social environment did not affect the response of tree swallows to simulated predation. However, manipulating female plumage during the nestling period did reduce nestling skeletal size and mass, although the effects depended on original plumage brightness. Our data demonstrate that transient stressors on female birds can have carry‐over effects on their nestlings if they occur during critical periods in the breeding season. -
Abstract Supplemental feeding can increase the overall health of animals but also can have variable effects on how animals defend themselves against parasites. However, the spatiotemporal effects of food supplementation on host–parasite interactions remain poorly understood, likely because large‐scale, coordinated efforts to investigate them are difficult.
Here, we introduce the Nest Parasite Community Science Project, which is a community‐based science project that coordinates studies with bird nest box ‘stewards’ from the public and scientific community. This project was established to understand broad ecological patterns between hosts and their parasites.
The goal of this study was to determine the effect of food supplementation on eastern bluebirds (
Sialia sialis ) and their nest parasite community across the geographic range of the bluebirds from 2018 to 2021. We received 674 nests from 69 stewards in 26 states in the eastern United States. Nest box stewards reported whether or not they provided mealworms or suet near nesting bluebirds, then they followed the nesting success of the birds (number of eggs laid and hatched, proportion that hatched, number and proportion of nestlings that successfully fledged). We then identified and quantified parasites in the nests.Overall, we found that food supplementation increased fledging success. The most common nest parasite taxon was the parasitic blow fly (
Protocalliphora sialia ), but a few nests contained fleas (Ceratophyllus idius ,C. gallinae andOrchopeas leucopus ) and mites (Dermanyssus spp. andOrnithonyssus spp.). Blow flies were primarily found at northern latitudes, where food supplementation affected blow fly prevalence. However, the direction of this effect varied substantially in direction and magnitude across years. More stewards fed bluebirds at southern latitudes than at northern latitudes, which contradicts the findings of other community‐based science projects.Overall, food supplementation of birds was associated with increased host fitness but did not appear to play a consistent role in defence against these parasites across all years. Our study demonstrates the importance of coordinated studies across years and locations to understand the effects of environmental heterogeneity, including human‐based food supplementation, on host–parasite dynamics.
-
ABSTRACT Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high‐dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three‐stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross‐taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.