Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We demonstrate a compact multilayer GaAs–AlAs structure for passive optical edge detection at multiple wavelengths. Through the inverse design of the layer thicknesses, this structure manipulates spatial frequency components of an incoming wavefront, selectively reflecting high-frequency features while suppressing low-frequency intensity variations. Simulations reveal a reflectance transition from minimal to near-total as a function of numerical aperture, a property leveraged for enhancing edge contrast in optical imaging. For the first time, to our knowledge, we utilize molecular beam epitaxy (MBE) to fabricate edge detection devices, ensuring structural fidelity. Material characterization confirms high-quality interfaces, precise thickness control, and excellent uniformity, validating the suitability of MBE for this application. Experimental angle-resolved reflectance measurements closely align with theoretical predictions, demonstrating the feasibility of this approach for real-time, hardware-based optical image processing. The proposed design automatically works for at least two wavelengths and can be readily extended to operate at multiple wavelengths simultaneously. This work opens new possibilities for employing multilayer interference structures in high-performance optical imaging and real-time signal processing.more » « less
-
Abstract Magnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb 2 Te 4 is ferromagnetic due to Mn Sb antisites and has relatively high Curie temperatures (T C ), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb 2 Te 3 ) 1−x (MnSb 2 Te 4 ) x , where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding T C values. Samples that contain x < 0.7 or x > 0.9 have a single T C value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two T C values, one (T C1 ) at ~ 25 K and the second (T C2 ) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a T C1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher T C2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.more » « less
-
Three-dimensional topological insulators (3D-TIs) are a new generation of materials with insulating bulk and exotic metallic surface states that facilitate a wide variety of ground-breaking applications. However, utilization of the surface channels is often hampered by the presence of crystal defects, such as antisites, vacancies, and twin domains. For terahertz device applications, twinning is shown to be highly deleterious. Previous attempts to reduce twins using technologically important InP(111) substrates have been promising, but have failed to completely suppress twin domains while preserving high structural quality. Here we report growth of twin-free molecular beam epitaxial Bi2Se3 and Sb2Te3 structures on ultra-thin In2Se3 layers formed by a novel selenium passivation technique during the oxide desorption of smooth, non-vicinal InP(111)B substrates, without the use of an indium source. The formation of un-twinned In2Se3 provides a favorable template to fully suppress twin domains in 3D-TIs, greatly broadening novel device applications in the terahertz regime.more » « less
An official website of the United States government
