- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Tamasan, A. (2)
-
Fujiwara, H (1)
-
Oishi N. (1)
-
Sadiq K. (1)
-
Sadiq, K (1)
-
Tamasan A. (1)
-
Tamasan, A (1)
-
Timonov, A (1)
-
Timonov, A. (1)
-
• Fujiwara H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Ohe, Takashi (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
• Fujiwara H.; Oishi N.; Sadiq K.; Tamasan A. (, Keisan suri kogaku ronbunshu)The present paper proposes a novel numerical scheme to X-ray Computerized Tomography (CT) from partial measurement data. In order to reduce radiation exposure, it is desirable to irradiate X-ray only around region of interest (ROI), while the conventional reconstruction methods such as filtered back projection (FBP) could not work due to its intrinsic limitation of dependency on whole measurement data. The proposed method gives a direct numerical reconstruction employing a Cauchy type boundary integration in $$A$$-analytic theory and a singular integral equation which maps boundary measurement to interior data. Numerical examples using experimental data are also exhibited to show validity of the proposed numerical procedure.more » « less
-
Tamasan, A.; Timonov, A. (, Applied Numerical Mathematics)
-
Tamasan, A; Timonov, A (, Inverse problems)We propose and study a method for imaging an approximate electrical conductivity from the magnitude of one interior current density field without any knowledge of the boundary voltage potential. Solely from this interior data, the exact conductivity is impossible to recover as non-unique solutions exist. We propose a method to recover a minimum residual type solution. The method is based on a weighted least gradient problem in the subspace of functions of bounded variations with square integrable traces. We prove existence and uniqueness for a nearby problem, and study the continuous dependence data for a regularized problem. The computational effectiveness and numericamore » « less
An official website of the United States government

Full Text Available