skip to main content


Search for: All records

Creators/Authors contains: "Tan, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. We show how any PAC learning algorithm that works under the uniform distribution can be transformed, in a blackbox fashion, into one that works under an arbitrary and unknown distribution ‍D. The efficiency of our transformation scales with the inherent complexity of ‍D, running in (n, (md)d) time for distributions over n whose pmfs are computed by depth-d decision trees, where m is the sample complexity of the original algorithm. For monotone distributions our transformation uses only samples from ‍D, and for general ones it uses subcube conditioning samples. A key technical ingredient is an algorithm which, given the aforementioned access to D, produces an optimal decision tree decomposition of D: an approximation of D as a mixture of uniform distributions over disjoint subcubes. With this decomposition in hand, we run the uniform-distribution learner on each subcube and combine the hypotheses using the decision tree. This algorithmic decomposition lemma also yields new algorithms for learning decision tree distributions with runtimes that exponentially improve on the prior state of the art—results of independent interest in distribution learning. 
    more » « less
  3. We give a pseudorandom generator that fools m -facet polytopes over {0, 1} n with seed length polylog( m ) · log n . The previous best seed length had superlinear dependence on m . 
    more » « less
  4. We give an nO(log log n)-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over { ± 1}n. Even in the realizable setting, the previous fastest runtime was nO(log n), a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of O’Donnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be “pruned” so that every variable in the resulting tree is influential. 
    more » « less
  5. null (Ed.)
  6. Micciancio, Daniele ; Ristenpart, Thomas. (Ed.)
    We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials. Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopad- hyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable code that is secure against tampering by bounded-size arithmetic circuits. We show applications of our non-malleable code in constructing non-malleable se- cret sharing schemes that are robust against bounded-degree polynomial tampering. In fact our result is stronger: we can handle adversaries that can adaptively choose the polynomial tampering function based on initial leakage of a bounded number of shares. Our results are derived from explicit constructions of seedless non-malleable ex- tractors that can handle bounded-degree polynomial tampering functions. Prior to our work, no such result was known even for degree-2 (quadratic) polynomials. 
    more » « less