skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tao, Terence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract The entropic doubling of a random variable taking values in an abelian group is a variant of the notion of the doubling constant of a finite subset of , but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of Pálvölgyi and Zhelezov on the “skew dimension” of subsets of with small doubling; (2) A new proof, and an improvement, of a result of the second author on the dimension of subsets of with small doubling; (3) A proof that the Polynomial Freiman–Ruzsa conjecture over implies the (weak) Polynomial Freiman–Ruzsa conjecture over . 
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  3. The periodic tiling conjecture asserts that any finite subset of a lattice $$\mathbb{Z}^d$$ that tiles that lattice by translations, in fact tiles periodically. In this work we disprove this conjecture for sufficiently large $$d$$, which also implies a disproof of the corresponding conjecture for Euclidean spaces $$\mathbb{R}^d$$. In fact, we also obtain a counterexample in a group of the form $$\mathbb{Z}^2 \times G_0$$ for some finite abelian $$2$$-group $$G_0$$. Our methods rely on encoding a "Sudoku puzzle'' whose rows and other non-horizontal lines are constrained to lie in a certain class of "$$2$$-adically structured functions'', in terms of certain functional equations that can be encoded in turn as a single tiling equation, and then demonstrating that solutions to this Sudoku puzzle exist, but are all non-periodic. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  4. Abstract We give an improved lower bound for the average of the Erdős–Hooley function , namely for all and any fixed , where is an exponent previously appearing in work of Green and the first two authors. This improves on a previous lower bound of of Hall and Tenenbaum, and can be compared to the recent upper bound of of the second and third authors. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Let Γ<#comment/> \Gamma be a countable abelian group. An (abstract) Γ<#comment/> \Gamma -system X \mathrm {X} - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of Γ<#comment/> \Gamma - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor Z 2 ( X ) \mathrm {Z}^2(\mathrm {X}) . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian Γ<#comment/> \Gamma , namely that they are the inverse limit of translational systems G n / Λ<#comment/> n G_n/\Lambda _n arising from locally compact nilpotent groups G n G_n of nilpotency class 2 2 , quotiented by a lattice Λ<#comment/> n \Lambda _n . Results of this type were previously known when Γ<#comment/> \Gamma was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers U 3 ( G ) U^3(G) norm for arbitrary finite abelian groups G G
    more » « less
  6. Abstract We introduce a new probabilistic model of the primes consisting of integers that survive the sieving process when a random residue class is selected for every prime modulus below a specific bound. From a rigorous analysis of this model, we obtain heuristic upper and lower bounds for the size of the largest prime gap in the interval $[1,x]$ [ 1 , x ] . Our results are stated in terms of the extremal bounds in the interval sieve problem. The same methods also allow us to rigorously relate the validity of the Hardy-Littlewood conjectures for an arbitrary set (such as the actual primes) to lower bounds for the largest gaps within that set. 
    more » « less
  7. Abstract We prove an extension of the Moore–Schmidt theorem on the triviality of the first cohomology class of cocycles for the action of an arbitrary discrete group on an arbitrary measure space and for cocycles with values in an arbitrary compact Hausdorff abelian group. The proof relies on a ‘conditional’ Pontryagin duality for spaces of abstract measurable maps. 
    more » « less