This content will become publicly available on September 1, 2024
 NSFPAR ID:
 10440641
 Date Published:
 Journal Name:
 Inventiones mathematicae
 Volume:
 233
 Issue:
 3
 ISSN:
 00209910
 Page Range / eLocation ID:
 1471 to 1518
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

null (Ed.)In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain onedimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$ , where $m\geq 2$ . We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$ ) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$ . The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$ , a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$ . In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$ : one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$ , yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$ , and $f_{c}(x)=x^{2}+c$ . The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.more » « less

Abstarct Given disjoint subsets T 1 , …, T m of “not too large” primes up to x , we establish that for a random integer n drawn from [1, x ], the m dimensional vector enumerating the number of prime factors of n from T 1 , …, T m converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T 1 , …, T m are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors.more » « less

Abstract We investigate the asymptotics of the total number of simple $(4a+1)$knots with Alexander polynomial of the form $mt^2 +(12m) t + m$ for some nonzero $m \in [X, X]$. Using Kearton and Levine’s classification of simple knots, we give equivalent algebraic and arithmetic formulations of this counting question. In particular, this count is the same as the total number of ${\mathbb{Z}}[1/m]$equivalence classes of binary quadratic forms of discriminant $14m$, for $m$ running through the same range. Our heuristics, based on the Cohen–Lenstra heuristics, suggest that this total is asymptotic to $X^{3/2}/\log X$ and the largest contribution comes from the values of $m$ that are positive primes. Using sieve methods, we prove that the contribution to the total coming from $m$ positive prime is bounded above by $O(X^{3/2}/\log X)$ and that the total itself is $o(X^{3/2})$.

We show that for primes
$N, p \geq 5$ with$N \equiv 1 \bmod p$ , the class number of$\mathbb {Q}(N^{1/p})$ is divisible by$p$ . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when$N \equiv 1 \bmod p$ , there is always a cusp form of weight$2$ and level$\Gamma _0(N^2)$ whose$\ell$ th Fourier coefficient is congruent to$\ell + 1$ modulo a prime above$p$ , for all primes$\ell$ . We use the Galois representation of such a cusp form to explicitly construct an unramified degree$p$ extension of$\mathbb {Q}(N^{1/p})$ . 
Abstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p . We address both the case where X is defined over $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomialtime algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O ( N ) space. These are the first practical implementations of average polynomialtime algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest.more » « less