skip to main content

Search for: All records

Creators/Authors contains: "Thadhani, Naresh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Molecular dynamics (MD) simulations are carried out to investigate the effects of the type and spacing of FCC/BCC interfaces on the deformation and spall behavior. The simulations are carried out using model Cu/Ta multilayers with six different types of interfaces. The results suggest that interface type can significantly affect the structure and intensity of the incoming shock wave, change the activated slip systems, alter dislocation slip and twinning behavior, affect where and how voids are nucleated during spallation and the resulting spall strength. Moreover, the above aspects are significantly affected by the interface spacing. A transition from homogeneous to heterogeneous dislocation nucleation occurs as the interface spacing is decreased to 6 nm. Depending on interface type and spacing, damage (voids) nucleation and spall failure is observed to occur not only at the Cu/Ta interfaces, but also in the weaker Cu layer interior, or even in the stronger Ta layer interior, although different mechanisms underlie each of these three distinct failure modes. These findings point to the fact that, depending on the combination of interface type and spacing, interfaces can lead to both strengthening and weakening of the Cu/Ta multilayered microstructures.

  2. The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO 2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO 2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO 2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods.