skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, Elizabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent anthropogenic warming in the Arctic has caused accelerated permafrost thaw, leading to the export of relict organic carbon (OC) to the atmosphere and surrounding depositional environments. Past episodes of warmth exceeding pre-industrial temperatures, such as the Holocene Thermal Maximum (HTM; 11 to 8 kiloannum (ka) at our study site), may serve as an analogue for how the Arctic carbon cycle responds to ongoing warming. We reconstructed accumulation rates of three OC endmembers (contemporaneous aquatic biomass, postglacial soil, and MIS 5 soil) at Lake CF8, northeastern Baffin Island, during the 12.4 kyr (kiloyear) since local deglaciation. We characterized OC endmembers and downcore sediment mixtures using Ramped Pyrolysis/Oxidation (RPO), radiocarbon (14C) age offsets between bulk sediment and macrofossils, and stable carbon isotopes (δ13C). We modeled endmember contributions to the lake sediment using the Bayesian mixing framework, MixSIAR. RPO revealed similar patterns between OC volatilization and pyrolysis temperature indicating minimal OC degradation between source and sink. Endmember OC accumulation rates, accounting for MixSIAR results, sedimentation, and total OC content, showed that mean postglacial soil inputs to Lake CF8 were greatest between 11.9 and 9.0 ka, 1.5 times greater than the rest of the record. This period coincided with regional peak Holocene summer temperatures (up to 5 °C (celsius) warmer than the pre industrial average), despite having low 14C age-offsets. Since modern Arctic temperatures have already warmed by 2-3 °C, similar to the HTM, regional permafrost may be mobilized at the same rates that we estimate for the early Holocene. 
    more » « less
  2. Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site-specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994-1997 and 2017–2021 from a transect of sites spanning a Québec-to-Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice-free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through-flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer-biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through-flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records. 
    more » « less
  3. Sedimentary plant wax δ 2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid- and long-chain plant waxes derive from aquatic and terrestrial plants, respectively. We compare n-alkanoic acid and n-alkane chain-length distributions and n-alkanoic acid δ2H and δ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid-chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and to Salix spp., which are among the most abundant terrestrial plants in the QPT catchment. Mid-chain n-alkanoic acid δ2H values are similar in sediments and submerged/ floating aquatic plants, but 50‰ lower than Salix spp. In contrast, sedimentary long-chain n-alkanoic acid δ2H values fall between those for submerged/floating aquatic plants and Salix spp. We therefore infer that mid-chain waxes in QPT are primarily from aquatic plants, whereas long-chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low-lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment-water interface, the aquatic plants can contribute large portions of sedimentary waxes. 
    more » « less
  4. Paleo water isotope records can elucidate how the Arctic water cycle responded to past climate changes. We analyze the hydrogen isotope composition (δ2H) of plant‐derived n‐alkanoic acids (waxes) from Lake Qaupat, Baffin Island, Nunavut, Canada, to assess moisture sources and seasonality during the past 5.8 kiloannum (ka). We compare this record to a sedimentary ancient DNA (sedaDNA)‐inferred vascular plant record from the same lake, aiming to overcome the uncertainty of plant community impacts on leaf waxes. As the sedaDNA record reveals a stable plant community after the colonization of Betula sp. at 6.1 ka, we interpret plant wax δ2H values to reflect climate, specifically mean annual precipitation δ2H. However, the distributions of n‐alkanoic acid homologs suggest that aquatic mosses, which are not represented in the sedaDNA record, may become more abundant towards the present. Therefore, we cannot exclude the possibility that changes in the plant community cause changes in the plant wax δ2H record, particularly long‐chain waxes, which become less abundant through this record. We find that Lake Qaupat mid‐chain plant wax δ2H is enriched coincident with high Labrador Sea summer surface temperature, which suggests that local moisture sources in summer and early autumn have the greatest impact on precipitation isotopes in this region. 
    more » « less
  5. Biomass burning plays an important role in climate-forcing and atmospheric chemistry. The drivers of fire activity over the past two centuries, however, are hotly debated and fueled by poor constraints on the magnitude and trends of preindustrial fire regimes. As a powerful tracer of biomass burning, reconstructions of paleoatmospheric carbon monoxide (CO) can provide valuable information on the evolution of fire activity across the preindustrial to industrial transition. Here too, however, significant disagreements between existing CO records currently allow for opposing fire histories. In this study, we reconstruct a continuous record of Antarctic ice core CO between 1821 and 1995 CE to overlap with direct atmospheric observations. Our record indicates that the Southern Hemisphere CO burden ([CO]) increased by 50% from a preindustrial mixing ratio of ca. 35 ppb to ca. 53 ppb by 1995 CE with more variability than allowed for by state-of-the-art chemistry-climate models, suggesting that historic CO dynamics have been not fully accounted for. Using a 6-troposphere box model, a 40 to 50% decrease in Southern Hemisphere biomass-burning emissions, coincident with unprecedented rates of early 20th century anthropogenic land-use change, is identified as a strong candidate for this mismatch. 
    more » « less
  6. Abstract In this work, we utilize a transect of core top, mid- to late Holocene, sediments from the Eastern Siberian Sea to the central Arctic Ocean, spanning gradients in upper-ocean water column properties, to examine regional planktic foraminiferal species abundances and geochemistry. We present species- and morphotype-specific foraminiferal assemblages at these sites and stable isotope analyses of neogloboquadrinids. We find little variation in planktic species populations, and only small variations in N. pachyderma morphotype distributions, between sites. Spatial averages of N. pachyderma morphotype and N. incompta δ18O values show no significant differences, suggesting a similar calcification depth for all morphotypes of N. pachyderma and N. incompta across our sites, which we estimate to be between ∼ 50–150 m. Values of δ18O of a group of unencrusted specimens delineate a shallower calcification habitat. Neogloboquadrina pachyderma-2 Mg/Ca values yield temperatures outside the range of observations using available calibration equations, pointing toward the need for more Arctic-specific Mg/Ca-temperature calibrations. 
    more » « less
  7. Cognitive interviews play an important role in articulating the intended construct of educational assessments. This paper describes the iterative development of protocols for cognitive interviews with kindergarten through second-grade children to understand how their spatial reasoning skill development aligns with intended constructs. We describe the procedures used to gather evidence of construct relevance and improved alignment to task-based interview items through multiple pilot rounds before conducting cognitive interviews. We found improved alignment and reduced construct irrelevant variance after protocol revisions. 
    more » « less
  8. Abstract. Basal materials in ice cores hold information about paleoclimate conditions, glacial processes, and the timing of past ice-free intervals, all of which aid understanding of ice sheet stability and its contribution to sea level rise in a warming climate. Only a few cores have been drilled through ice sheets into the underlying sediment and bedrock, producing limited material for analysis. The last of three Camp Century ice cores, which the U.S. Army collected in northwestern Greenland from 1963–1966 CE, recovered about 3.5 m of subglacial material, including ice and sediment. Here, we document the scientific history of the Camp Century subglacial material. We present our recent core-cutting, sub-sampling, and processing methodology and results for this unique archive. In 1972 CE, curators at the Buffalo, New York, Ice Core Laboratory cut the original core sections into 32 segments that were each about 10 cm long. Since then, two segments were lost and are unaccounted for, two were thawed, and two were cut as pilot samples in 2019 CE. Except for the two thawed segments, the rest of the extant core has remained frozen since collection. In 2021 CE, we documented, described, and then cut each of the remaining frozen archived segments (n=26). We saved an archival half and cut the working half into eight oriented sub-samples under controlled temperature and light conditions for physical, geochemical, isotopic, sedimentological, magnetic, and biological analyses. Our approach was designed to maximize sample usage for multiproxy analysis, minimize contamination, and preserve archive material for future analyses of this legacy subglacial material. Grain size, bulk density, sedimentary features, magnetic susceptibility, and ice content, as well as pore ice pH and conductivity, suggest that the basal sediment contains five stratigraphic units. We interpret these stratigraphic units as representing different depositional environments in subglacial or ice-free conditions: from bottom to top, a diamicton with subhorizontal ice lenses (Unit 1), vertically fractured ice with dispersed fine-grained sediments (<20 % in mass) (Unit 2), a normally graded bed of pebbles to very fine sand in an icy matrix (Unit 3), bedded very fine to fine sand (Unit 4), and stratified medium to coarse sand (Unit 5). Plant macrofossils are present in all samples and are most abundant in Units 3 and 4; insect remains are present in some samples (Units 1, 3, and 5). Our approach provides a working template for future studies of ice core basal materials because it includes intentional planning of core sub-sampling, processing methodologies, and archiving strategies to optimize the collection of paleoclimate, glacial process, geochemical, geochronological, and sediment properties from archives of limited size. Our work benefited from a carefully curated and preserved archive, allowing the application of analytical techniques not available in 1966 CE. Preserving uncontaminated core material for future analyses that use currently unavailable tools and techniques is an important consideration for rare archive materials such as these from Camp Century. 
    more » « less
  9. Abstract. A new meteorological dataset derived from records of Antarctic automatic weather stations (here called the AntAWS dataset) at 3 h, daily and monthly resolutions including quality control information is presented here. This dataset integrates the measurements ofair temperature, air pressure, relative humidity, and wind speed anddirection from 267 Antarctic AWSs obtained from 1980 to 2021. The AWS spatial distribution remains heterogeneous, with the majority of instrumentslocated in near-coastal areas and only a few inland on the East Antarctic Plateau. Among these 267 AWSs, 63 have been operating for more than 20 years and 27 of them in excess of more than 30 years. Of the fivemeteorological parameters, the measurements of air temperature have the bestcontinuity and the highest data integrity. The overarching aim of thiscomprehensive compilation of AWS observations is to make these data easilyand widely accessible for efficient use in local, regional and continentalstudies; it may be accessed at https://doi.org/10.48567/key7-ch19 (Wang et al., 2022). This dataset isinvaluable for improved characterization of the surface climatology acrossthe Antarctic continent, to improve our understanding of Antarctic surfacesnow–atmosphere interactions including precipitation events associated with atmospheric rivers and to evaluate regional climate models ormeteorological reanalysis products. 
    more » « less