Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pokkathappada, Abdul Azeez (Ed.)Geochemical proxies of sea surface temperature (SST) and seawater pH (pHsw) in scleractinian coral skeletons are valuable tools for reconstructing tropical climate variability. However, most coral skeletal SST and pHswproxies are univariate methods that are limited in their capacity to circumvent non-climate-related variability. Here we present a novel multivariate method for reconstructing SST and pHswfrom the geochemistry of coral skeletons. Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes reconstruction skill by leveraging the covariance across an array of coral elemental and isotopic data with SST and pHsw. First, using a synthetic proxy experiment, we find that SMITE SST reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and variable calibration period lengths relative to Sr/Ca. While SMITE pHswreconstruction statistics remain relative toδ11B throughout the same synthetic experiment, the magnitude of the long-term trend in pHswis progressively lost under conditions of moderate-to-high analytical uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemical variables (B/Ca,δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two BermudanPorites astreoidescorals. Despite a <3.5 year calibration period, SMITE SST and pHswestimates exhibit significantly better accuracy, precision, and correlation with their respective climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE model parameters are highly reproducible between the two coral cores, indicating great potential for fossil applications (when preservation is high). The results shown here indicate that the SMITE method can outperform the most common coral-based SST and pHswreconstructions methods to date, particularly in datasets with a large variety of geochemical variables. We therefore provide a list of recommendations and procedures for users to begin implementing the SMITE method as well as an open-source software package to facilitate dissemination of the SMITE method.more » « lessFree, publicly-accessible full text available June 25, 2025
-
Abstract The geochemistry of tropical coral skeletons is widely used in paleoclimate reconstructions. However, sub‐aerially exposed corals may be affected by diagenesis, altering the aragonite skeleton through partial dissolution, or infilling of secondary minerals like calcite. We analyzed the impact of intra‐skeletal calcite on the geochemistry (δ18O, Sr/Ca, Mg/Ca, Li/Mg, Li/Ca, U/Ca, B/Ca, Ba/Ca, and Mn/Ca) of a sub‐aerially exposedPoritessp. coral. Each micro‐milled coral sample was split into two aliquots for geochemistry and X‐ray diffraction (XRD) analysis to quantify the direct impact of calcite on geochemistry. We modified the sample loading technique for XRD to detect low calcite levels (1%–2%; total uncertainty = 0.33%, 2σ) in small samples (∼7.5 mg). Calcite content ranged from 0% to 12.5%, with higher percentages coinciding with larger geochemical offsets. Sr/Ca, Li/Mg, Li/Ca, and δ18O‐derived sea‐surface temperature (SST) anomalies per 1% calcite were +0.43°C, +0.24°C, +0.11°C, and +0.008°C, respectively. A 3.6% calcite produces a Sr/Ca‐SST signal commensurate with local SST seasonality (∼1.5°C), which we propose as the cut‐off level for screening calcite diagenesis in paleo‐temperature reconstructions. Inclusion of intra‐skeletal calcite decreases B/Ca, Ba/Ca, and U/Ca values, and increases Mg/Ca values, and can therefore impact reconstructions of paleoclimate and the carbonate chemistry of the semi‐isolated calcifying fluid in corals. This study emphasizes the importance of quantifying fine‐scale calcite diagenesis to identify coral preservation levels and assure robust paleoclimate reconstructions.more » « less
-
Obtaining dispersal estimates for a species is key to understanding local adaptation and population dynamics and to implementing conservation actions. Genetic isolation-by-distance (IBD) patterns can be used for estimating dispersal, and these patterns are especially useful for marine species in which few other methods are available. In this study, we genotyped coral reef fish (Amphiprion biaculeatus) at 16 microsatellite loci across eight sites across 210 km in the central Philippines to generate fine-scale estimates of dispersal. All sites except for one followed IBD patterns. Using IBD theory, we estimated a larval dispersal kernel spread of 8.9 km (95% confidence interval of 2.3–18.4 km). Genetic distance to the remaining site correlated strongly with the inverse probability of larval dispersal from an oceanographic model. Ocean currents were a better explanation for genetic distance at large spatial extents (sites greater than 150 km apart), while geographic distance remained the best explanation for spatial extents less than 150 km. Our study demonstrates the utility of combining IBD patterns with oceanographic simulations to understand connectivity in marine environments and to guide marine conservation strategies.more » « less
-
Human-induced ecological cascades: Extinction, restoration, and rewilding in the Galápagos highlandsOceanic islands support unique biotas but often lack ecological redundancy, so that the removal of a species can have a large effect on the ecosystem. The larger islands of the Galápagos Archipelago once had one or two species of giant tortoise that were the dominant herbivore. Using paleoecological techniques, we investigate the ecological cascade on highland ecosystems that resulted from whalers removing many thousands of tortoises from the lowlands. We hypothesize that the seasonal migration of a now-extinct tortoise species to the highlands was curtailed by decreased intraspecific competition. We find the trajectory of plant community dynamics changed within a decade of the first whaling vessels visiting the islands. Novel communities established, with a previously uncommon shrub, Miconia , replacing other shrubs of the genera Alternanthera and Acalypha . It was, however, the introduction of cattle and horses that caused the local extirpation of plant species, with the most extreme impacts being evident after c. 1930. This modified ecology is considered the natural state of the islands and has shaped subsequent conservation policy and practice. Restoration of El Junco Crater should emphasize exclusion of livestock, rewilding with tortoises, and expanding the ongoing plantings of Miconia to also include Acalypha and Alternanthera .more » « less