Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.more » « lessFree, publicly-accessible full text available June 27, 2025
-
Abstract The U.S. coastlines have experienced rapid increases in occurrences of High Tide Flooding (HTF) during recent decades. While it is generally accepted that relative mean sea level (RMSL) rise is the dominant cause for this, an attribution to individual components is still lacking. Here, we use local sea-level budgets to attribute past changes in HTF days to RMSL and its individual contributions. We find that while RMSL rise generally explains > 84% of long-term increases in HTF days locally, spatial patterns in HTF changes also depend on differences in flooding thresholds and water level characteristics. Vertical land motion dominates long-term increases in HTF, particularly in the northeast, while sterodynamic sea level (SDSL) is most important elsewhere and on shorter temporal scales. We also show that the recent SDSL acceleration in the Gulf of Mexico has led to an increase of 220% in the frequency of HTF events over the last decade.
-
Free, publicly-accessible full text available August 1, 2025
-
Abstract Satellite altimetry reveals substantial decadal variability in sea level
ζ across the tropical Pacific during 1993–2015. An ocean state estimate that faithfully reproduces the observations is used to elucidate the origin of these low‐frequency tropical Pacificζ variations. Analysis of the hydrostatic equation reveals that recent decadalζ changes in the tropical Pacific are mainly thermosteric in nature, related to changes in upper‐ocean heat content. A forcing experiment performed with the numerical model suggests that anomalous wind stress was an important driver of the relevant heat storage and thermosteric variation. Closed budget diagnostics further clarify that the wind‐stress‐related thermostericζ variation resulted from the joint actions of large‐scale ocean advection and local surface heat flux, such that advection controlled the budget over shorter, intraseasonal to interannual time scales, and local surface heat flux became increasingly influential at longer decadal periods. In particular, local surface heat flux was important in contributing to a recent reversal of decadalζ trends in the tropical Pacific. Contributions from local surface heat flux partly reflect damping latent heat flux tied to wind‐stress‐driven sea‐surface‐temperature variations. -