skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 27, 2025

Title: Explainable El Niño predictability from climate mode interactions
The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.  more » « less
Award ID(s):
2219257 2219829
PAR ID:
10520715
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature
Volume:
630
Issue:
8018
ISSN:
0028-0836
Page Range / eLocation ID:
891 to 898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study illustrates the considerable improvement in accuracy achievable for long‐lead forecasts (18 months) of the Ocean Niño Index (ONI) through the utilization of a long short‐term memory (LSTM) machine learning algorithm. The research assesses the predictive potential of eight predictors from both tropical and extratropical regions constructed based on sea surface temperature, outgoing longwave radiation, sea surface height and zonal and meridional wind anomalies. In comparison to linear regression model forecasts, the LSTM model outperforms them for both the tropical and extratropical predictor sets. Among all the predictors, the western North Pacific (WNP) index demonstrates the highest prediction skill in ONI forecasts, followed by the North Tropical Atlantic (NTA) index and then the sea surface height index. While other predictors help the LSTM model to forecast either the phase variation of the amplitude variation of the observed ONI, the extratropical WNP predictor enables the LSTM model to forecast both variations. This superiority can be attributed to the involvement of SST anomalies in the WNP region in both tropical and extratropical El Niño–Southern Oscillation (ENSO) dynamics, allowing for the utilization of predictive potential from both components of ENSO dynamics. The study also concludes that the extratropical ENSO dynamics provide a robust source of predictability for long‐lead ENSO forecasts, which can be effectively harnessed using the LSTM model.

     
    more » « less
  2. Abstract

    Climate variability has distinct spatial patterns with the strongest signal of sea surface temperature (SST) variance residing in the tropical Pacific. This interannual climate phenomenon, the El Niño-Southern Oscillation (ENSO), impacts weather patterns across the globe via atmospheric teleconnections. Pronounced SST variability, albeit of smaller amplitude, also exists in the other tropical basins as well as in the extratropical regions. To improve our physical understanding of internal climate variability across the global oceans, we here make the case for a conceptual model hierarchy that captures the essence of observed SST variability from subseasonal to decadal timescales. The building blocks consist of the classic stochastic climate model formulated by Klaus Hasselmann, a deterministic low-order model for ENSO variability, and the effect of the seasonal cycle on both of these models. This model hierarchy allows us to trace the impacts of seasonal processes on the statistics of observed and simulated climate variability. One of the important outcomes of ENSO’s interaction with the seasonal cycle is the generation of a frequency cascade leading to deterministic climate variability on a wide range of timescales, including the near-annual ENSO Combination Mode. Using the aforementioned building blocks, we arrive at a succinct conceptual model that delineates ENSO’s ubiquitous climate impacts and allows us to revisit ENSO’s observed statistical relationships with other coherent spatio-temporal patterns of climate variability—so called empirical modes of variability. We demonstrate the importance of correctly accounting for different seasonal phasing in the linear growth/damping rates of different climate phenomena, as well as the seasonal phasing of ENSO teleconnections and of atmospheric noise forcings. We discuss how previously some of ENSO’s relationships with other modes of variability have been misinterpreted due to non-intuitive seasonal cycle effects on both power spectra and lead/lag correlations. Furthermore, it is evident that ENSO’s impacts on climate variability outside the tropical Pacific are oftentimes larger than previously recognized and that accurately accounting for them has important implications. For instance, it has been shown that improved seasonal prediction skill can be achieved in the Indian Ocean by fully accounting for ENSO’s seasonally modulated and temporally integrated remote impacts. These results move us to refocus our attention to the tropical Pacific for understanding global patterns of climate variability and their predictability.

     
    more » « less
  3. Abstract

    Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out to a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.

     
    more » « less
  4. Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989–2012) have little skill. Here we show, with both dynamical and physical–empirical models, that this recent failure is largely due to the models’ inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP–ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical–empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year retrospective forecast skill of 0.64 for 1921–2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP–ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability. 
    more » « less
  5. Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions. 
    more » « less