skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ting, Lena H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Motor skill expertise can facilitate more automatic movement, engaging less cortical activity while producing appropriate motor output. Accordingly, cortical-evoked N1 responses to balance perturbation, assessed using electroencephalography (EEG), are smaller in young and older adults with better balance. These responses may thus reflect individual balance challenge versus functional, or objective, task difficulty. However, the effect of balance expertise on cortical responses to balance perturbation has not been studied. We hypothesized that balance ability gained though long-term training facilitates more automatic balance control. Using professional modern dancers as balance experts, we compared cortical-evoked responses and biomechanics of the balance-correcting response between modern dancers and nondancers. We predicted that modern dancers would have smaller cortical-evoked responses and better balance recovery at equivalent levels of balance challenge. Support-surface perturbations were normalized to individual challenge levels by delivering perturbations scaled to 60% and 140% of each individual’s step threshold. In contrast to our prediction, dancers exhibited larger N1 responses compared to nondancers while demonstrating similar biomechanical responses. Our results suggest dancers have greater cortical sensitivity to balance perturbations than nondancers. Further, dancer N1 responses modulated across perturbation magnitudes according to differences in objective task difficulty. In contrast, nondancer N1 responses modulated as a function of individual challenge level. Our findings suggest dance training increases sensitivity of the initial, cortical N1 response to balance perturbation, supporting postural alignment to an objective reference. The N1 response may reflect differences in balance-error processing that are altered with specific long-term training and may have implications for rehabilitation. NEW & NOTEWORTHYModern dancers show larger cortical responses to balance perturbations than nondancers, suggesting a greater sensitivity to perturbations. These results contrast with evidence of larger cortical-evoked responses in young adults with poorer balance, consistent with the cortical N1 response being a balance error assessment signal. Whereas nondancers scaled cortical responses by individual differences in N1 amplitude, dancers’ cortical responses were scaled to objective differences in perturbation magnitude, suggesting increased postural awareness due to training. 
    more » « less
    Free, publicly-accessible full text available November 16, 2026
  2. Abstract Exoskeletons assist and augment human movement, but their effects on proprioceptive feedback remain poorly understood. We examined how parallel exoskeleton stiffness influences primary muscle spindle firing. In an anesthetized rat preparation, controlled stretches of the medial gastrocnemius were applied with springs (0–0.5 N/mm) attached in parallel to the muscle-tendon unit (MTU) to simulate passive exoskeleton assistance. Fascicle length was measured with sonomicrometry, force and MTU length with a servo motor, and spindle instantaneous firing rate (IFR) with dorsal root recordings. Increasing exoskeleton stiffness decreased biological muscle force (3.1 ± 0.6 N to 1.6 ± 0.6 N, p < 0.001) and stiffness (4.4 ± 1.5 N/mm to 2.3 ± 1.3 N/mm, p < 0.01), while fascicle length increased (7.9 ± 1.3 mm to 8.3 ± 1.5 mm, p < 0.005). Despite these altered mechanics, spindle firing did not significantly change, and showed weak correlations with muscle length, velocity, force, and yank (R2≤ 0.14). These results indicate that exoskeleton stiffness modifies fascicle dynamics without altering spindle firing. Previously proposed models of primary afferent firing did not sufficiently explain these results. This is the first in situ investigation of exoskeleton effects on primary afferent feedback during active contractions. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026
  3. Abstract Musculoskeletal simulations can offer valuable insight into how the properties of our musculoskeletal system influence the biomechanics of our daily movements. One such property is muscle’s history-dependent initial resistance to stretch, also known as short-range stiffness, which is key to stabilizing movements in response to external perturbations. Short-range stiffness is poorly captured by existing musculoskeletal simulations since they employ phenomenological Hill-type muscle models that lack the mechanisms underlying short-range stiffness. While it has been previously shown that biophysical cross-bridge models can reproduce muscle short-range-stiffness, it is unclear which specific biophysical properties are necessary to capture history-dependent muscle force responses in behaviorally relevant conditions. Here, we tested the ability of various biophysical cross-bridge models to reproduce empirical short-range stiffness and its history-dependent changes across a broad range of behaviorally relevant length changes and activation levels, using an existing dataset on permeabilized rat soleus muscle fibers (N = 11). We found that a biophysical cross-bridge model with cooperative myofilament activation reproduced the effects of muscle activation (R2= 0.86), stretch amplitude (R2= 0.71) and isometric recovery time (R2= 0.79) on history-dependent changes in short-range stiffness after shortening. Similar results were obtained when the cross-bridge distribution of the biophysical model was approximated by a Gaussian (R2= 0.73 - 0.88), but at a 20 times lower computational cost. These effects could not be reproduced by either a biophysical cross-bridge model without cooperative myofilament activation or a Hill-type model (R2< 0.5). The reduced computational demand of the Gaussian-approximated models facilitates implementing biophysical cross-bridge models with cooperative myofilament activation in musculoskeletal simulations to improve the prediction of short-range stiffness during movements. 
    more » « less
    Free, publicly-accessible full text available November 3, 2026
  4. Abstract Proprioceptive sensory feedback is crucial for the control of movement. In many ways, sensorimotor control loops in the neuromuscular system act as state feedback controllers. These controllers combine input commands and sensory feedback regarding the mechanical state of the muscle, joint or limb to modulate the mechanical output of the muscles. To understand how these control circuits function, it is necessary to understand fully the mechanical state variables that are signalled by proprioceptive sensory (propriosensory) afferents. Using new computational approaches, we demonstrate how combinations of group Ia and II muscle spindle afferent feedback can allow for tuned responses to force and the rate of force (or length and velocity) and how combinations of muscle spindle and Golgi tendon organ feedback can parse external and internal (self‐generated) force. These models suggest that muscle spindle feedback might be used to monitor and control muscle forces in addition to length and velocity and, when combined with tendon organ feedback, can distinguish self‐generated from externally imposed forces. Given that these models combine feedback from different sensory afferent types, they emphasize the utility of analysing muscle propriosensors as an integrated population, rather than independently, to gain a better understanding of propriosensory–motor control. Furthermore, these models propose a framework that links neural connectivity in the spinal cord with neuromechanical control. Although considerable work has been done on propriosensory–motor pathways in the CNS, our aim is to build upon this work by emphasizing the mechanical context. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  5. Abstract Physical human–robot interactions (pHRI) often provide mechanical force and power to aid walking without requiring voluntary effort from the human. Alternatively, principles of physical human–human interactions (pHHI) can inspire pHRI that aids walking by engaging human sensorimotor processes. We hypothesize that low-force pHHI can intuitively induce a person to alter their walking through haptic communication. In our experiment, an expert partner dancer influenced novice participants to alter step frequency solely through hand interactions. Without prior instruction, training, or knowledge of the expert’s goal, novices decreased step frequency 29% and increased step frequency 18% based on low forces (< 20 N) at the hand. Power transfer at the hands was 3–700 × smaller than what is necessary to propel locomotion, suggesting that hand interactions did not mechanically constrain the novice’s gait. Instead, the sign/direction of hand forces and power may communicate information about how to alter walking. Finally, the expert modulated her arm effective dynamics to match that of each novice, suggesting a bidirectional haptic communication strategy for pHRI that adapts to the human. Our results provide a framework for developing pHRI at the hand that may be applicable to assistive technology and physical rehabilitation, human-robot manufacturing, physical education, and recreation. 
    more » « less
  6. Principles from human-human physical interaction may be necessary to design more intuitive and seamless robotic devices to aid human movement. Previous studies have shown that light touch can aid balance and that haptic communication can improve performance of physical tasks, but the effects of touch between two humans on walking balance has not been previously characterized. This study examines physical interaction between two persons when one person aids another in performing a beam-walking task. 12 pairs of healthy young adults held a force sensor with one hand while one person walked on a narrow balance beam (2 cm wide x 3.7 m long) and the other person walked overground by their side. We compare balance performance during partnered vs. solo beam-walking to examine the effects of haptic interaction, and we compare hand interaction mechanics during partnered beam-walking vs. overground walking to examine how the interaction aided balance. While holding the hand of a partner, participants were able to walk further on the beam without falling, reduce lateral sway, and decrease angular momentum in the frontal plane. We measured small hand force magnitudes (mean of 2.2 N laterally and 3.4 N vertically) that created opposing torque components about the beam axis and calculated the interaction torque, the overlapping opposing torque that does not contribute to motion of the beam-walker’s body. We found higher interaction torque magnitudes during partnered beam-walking vs . partnered overground walking, and correlation between interaction torque magnitude and reductions in lateral sway. To gain insight into feasible controller designs to emulate human-human physical interactions for aiding walking balance, we modeled the relationship between each torque component and motion of the beam-walker’s body as a mass-spring-damper system. Our model results show opposite types of mechanical elements (active vs . passive) for the two torque components. Our results demonstrate that hand interactions aid balance during partnered beam-walking by creating opposing torques that primarily serve haptic communication, and our model of the torques suggest control parameters for implementing human-human balance aid in human-robot interactions. 
    more » « less