skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Topping, Michael W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the multi-phase structure of gas flows in galaxies. We study 80 galaxies during the epoch of peak star formation (1.4 ≤ z ≤ 2.7) using data from Keck/LRIS and VLT/KMOS. Our analysis provides a simultaneous probe of outflows using UV emission and absorption features and Hα emission. With this unprecedented data set, we examine the properties of gas flows estimated from LRIS and KMOS in relation to other galaxy properties, such as star formation rate (SFR), star formation rate surface density (ΣSFR), stellar mass (M∗), and main sequence offset (ΔMS). We find no strong correlations between outflow velocity measured from rest-UV lines and galaxy properties. However, we find that galaxies with detected outflows show higher averages in SFR, ΣSFR, and ΔMS than those lacking outflow detections, indicating a connection between outflow and galaxy properties. Furthermore, we find a lower average outflow velocity than previously reported, suggesting greater absorption at the systemic redshift of the galaxy. Finally, we detect outflows in 49% of our LRIS sample and 30% in the KMOS sample, and find no significant correlation between outflow detection and inclination. These results may indicate that outflows are not collimated and that Hα outflows have a lower covering fraction than low-ionization interstellar absorption lines. Additionally, these tracers may be sensitive to different physical scales of outflow activity. A larger sample size with a wider dynamic range in galaxy properties is needed to further test this picture. 
    more » « less
  2. Abstract Using deep near-infrared Keck/MOSFIRE observations, we analyze the rest-optical spectra of eight star-forming galaxies in the COSMOS and GOODS-N fields. We reach integration times of ∼10 hr in the deepest bands, pushing the limits on current ground-based observational capabilities. The targets fall into two redshift bins, of five galaxies atz∼ 1.7 and three galaxies atz∼ 2.5, and were selected as likely to yield significant auroral-line detections. Even with long integration times, detection of the auroral lines remains challenging. We stack the spectra together into subsets based on redshift, improving the signal-to-noise ratio on the [Oiii]λ4364 auroral emission line and, in turn, enabling a direct measurement of the oxygen abundance for each stack. We compare these measurements to commonly employed strong-line ratios alongside measurements from the literature. We find that the stacks fall within the distribution ofz> 1 literature measurements, but a larger sample size is needed to robustly constrain the relationships between strong-line ratios and oxygen abundance at high redshift. We additionally report detections of [Oi]λ6302 for nine individual galaxies and composite spectra of 21 targets in the MOSFIRE pointings. We plot their line ratios on the [Oiii]λ5008/Hβversus [Oi]λ6302/Hαdiagnostic diagram, comparing our targets to local galaxies and Hiiregions. We find that the [Oi]/Hαratios in our sample of galaxies are consistent with being produced in gas ionized byα-enhanced massive stars, as has been previously inferred for rapidly forming galaxies at early cosmic times. 
    more » « less
  3. Abstract We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies. 
    more » « less
  4. Abstract We present ultradeep Keck/MOSFIRE rest-optical spectra of two star-forming galaxies atz= 2.18 in the COSMOS field with bright emission lines, representing more than 20 hr of total integration. The fidelity of these spectra enabled the detection of more than 20 unique emission lines for each galaxy, including the first detection of the auroral [Oii]λλ7322, 7332 lines at high redshift. We use these measurements to calculate the electron temperature in the low-ionization O+zone of the ionized interstellar medium and derive abundance ratios of O/H, N/H, and N/O using the direct method. The N/O andα/Fe abundance patterns of these galaxies are consistent with rapid formation timescales and ongoing strong starbursts, in accord with their high specific star formation rates. These results demonstrate the feasibility of using auroral [Oii] measurements for accurate metallicity studies at high redshift in a higher-metallicity and lower-excitation regime previously unexplored with the direct method in distant galaxies. These results also highlight the difficulty in obtaining the measurements required for direct-method metallicities from the ground. We emphasize the advantages that the JWST/NIRSpec instrument will bring to high-redshift metallicity studies, where the combination of increased sensitivity and uninterrupted wavelength coverage will yield more than an order of magnitude increase in efficiency for multiplexed auroral-line surveys relative to current ground-based facilities. Consequently, the advent of JWST promises to be the beginning of a new era of precision chemical abundance studies of the early universe at a level of detail rivaling that of local galaxy studies. 
    more » « less
  5. Abstract We perform joint modeling of the composite rest-frame far-UV and optical spectra of redshift 1.85 ≤ z ≤ 3.49 star-forming galaxies to deduce key properties of the massive stars, ionized interstellar medium (ISM), and neutral ISM, with the aim of investigating the principal factors affecting the production and escape of Ly α photons. Our sample consists of 136 galaxies with deep Keck/LRIS and MOSFIRE spectra covering, respectively, Ly β through C iii ] λλ 1907, 1909 and [O ii ], [Ne iii ], H β , [O iii ], H α , [N ii ], and [S ii ]. Spectral and photoionization modeling indicates that the galaxies are uniformly consistent with stellar population synthesis models that include the effects of stellar binarity. Over the dynamic range of our sample, there is little variation in stellar and nebular abundance with Ly α equivalent width, W λ (Ly α ), and only a marginal anticorrelation between age and W λ (Ly α ). The inferred range of ionizing spectral shapes is insufficient to solely account for the variation in W λ (Ly α ); rather, the covering fraction of optically thick H i appears to be the principal factor modulating the escape of Ly α , with most of the Ly α photons in down-the-barrel observations of galaxies escaping through low column density or ionized channels in the ISM. Our analysis shows that a high star-formation-rate surface density, Σ SFR , particularly when coupled with a low galaxy potential (i.e., low stellar mass), can aid in reducing the covering fraction and ease the escape of Ly α photons. We conclude with a discussion of the implications of our results for the escape of ionizing radiation at high redshift. 
    more » « less
  6. ABSTRACT We analyse the completeness of the MOSDEF survey, in which z ∼ 2 galaxies were selected for rest-optical spectroscopy from well-studied HST extragalactic legacy fields down to a fixed rest-optical magnitude limit (HAB = 24.5). The subset of z ∼ 2 MOSDEF galaxies with high signal-to-noise (S/N) emission-line detections analysed in previous work represents a small minority (<10 per cent) of possible z ∼ 2 MOSDEF targets. It is therefore crucial to understand how representative this high S/N subsample is, while also more fully exploiting the MOSDEF spectroscopic sample. Using spectral-energy distribution (SED) models and rest-optical spectral stacking, we compare the MOSDEF z ∼ 2 high S/N subsample with the full MOSDEF sample of z ∼ 2 star-forming galaxies with redshifts, the latter representing an increase in sample size of more than a factor of three. We find that both samples have similar emission-line properties, in particular in terms of the magnitude of the offset from the local star-forming sequence on the [N ii] BPT diagram. There are small differences in median host galaxy properties, including the stellar mass (M*), star formation rate (SFR) and specific SFR (sSFR), and UVJ colours; however, these offsets are minor considering the wide spread of the distributions. Using SED modelling, we also demonstrate that the sample of z ∼ 2 star-forming galaxies observed by the MOSDEF survey is representative of the parent catalog of available such targets. We conclude that previous MOSDEF results on the evolution of star-forming galaxy emission-line properties were unbiased relative to the parent z ∼ 2 galaxy population. 
    more » « less
  7. ABSTRACT We present a detailed study of a galaxy merger taking place at z = 1.89 in the GOODS-S field. Here, we analyse Keck/MOSFIRE spectroscopic observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey along with multiwavelength photometry assembled by the 3D-HST survey. The combined data set is modelled to infer the past star formation histories (SFHs) of both merging galaxies. They are found to be massive, with log10(M*/M⊙) > 11, with a close mass ratio satisfying the typical major-merger definition. Additionally, in the context of delayed-τ models, GOODS-S 43114, and GOODS-S 43683 have similar SFHs and low star formation rates (log10(SFR(SED)/$${\rm M}_{\odot }\,\rm {yr}^{-1}$$) < 1.0) compared to their past averages. The best-fitting model SEDs show elevated H δA values for both galaxies, indicating that their stellar spectra are dominated by A-type stars, and that star formation peaked ∼0.5−1 Gyr ago and has recently declined. Additionally, based on SED fitting both merging galaxies turned on and shut off star formation within a few hundred Myr of each other, suggesting that their bursts of star formation may be linked. Combining the SFHs and H δA results with recent galaxy merger simulations, we infer that these galaxies have recently completed their first pericentric passage and are moving apart. Finally, the relatively low second velocity moment of GOODS-S 43114, given its stellar mass suggests a disc-like structure. However, including the geometry of the galaxy in the modelling does not completely resolve the discrepancy between the dynamical and stellar masses. Future work is needed to resolve this inconsistency in mass. 
    more » « less