skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tovar, John D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 29, 2026
  2. Abstract Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐b]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Biocompatible molecules with electronic functionality provide a promising substrate for biocompatible electronic devices and electronic interfacing with biological systems. Synthetic oligopeptides composed of an aromatic π-core flanked by oligopeptide wings are a class of molecules that can self-assemble in aqueous environments into supramolecular nanoaggregates with emergent optical and electronic activity. We present an integrated computational–experimental pipeline employing all-atom molecular dynamics simulations and experimental UV-visible spectroscopy within an active learning workflow using deep representational learning and multi-objective and multi-fidelity Bayesian optimization to design π-conjugated peptides programmed to self-assemble into elongated pseudo-1D nanoaggregates with a high degree of H-type co-facial stacking of the π-cores. We consider as our design space the 694 982 unique π-conjugated peptides comprising a quaterthiophene π-core flanked by symmetric oligopeptide wings up to five amino acids in length. After sampling only 1181 molecules (∼0.17% of the design space) by computation and 28 (∼0.004%) by experiment, we identify and experimentally validate a diversity of previously unknown high-performing molecules and extract interpretable design rules linking peptide sequence to emergent supramolecular structure and properties. 
    more » « less
  4. Organic electronics offer a route toward electronically active biocompatible soft materials capable of interfacing with biological and living systems. One class of promising organic electronic materials are π-conjugated peptides, synthetic molecules comprising an aromatic core flanked by oligopeptides, that can be engineered to self-assemble into elongated nanostructures with emergent optoelectronic functionality. In this work, we combine molecular dynamics simulations with electronic structure and charge transport calculations to computationally screen for high charge mobility π-conjugated peptides and to elucidate design rules linking aromatic core character with charge mobility. We consider within our screening library variations in the aromatic core chemistry and length of the alkyl chains connecting the oligopeptide wings to the core. After completing our computational screen we identify particular π-conjugated peptides capable of producing self-assembled biocompatible nanoaggregates with predicted hole mobilities of 0.224 cm^2/(Vs) and electron mobilities of 0.143 cm^2/(Vs), and uncover design rules that enhance understanding of the molecular determinants of charge mobility within π-conjugated peptide assemblies. 
    more » « less
  5. null (Ed.)
    Peptidic sequences when conjugated to π-electronic groups form self-assembled networks of π-electron pathways. These materials hold promise for bio-interfacing charge transporting applications because of their aqueous processability and compatibility. In this work, we incorporated diketopyrrolopyrrole (DPP), a well-established π-core for organic electronic applications, within the peptidic sequence. We embedded different numbers of thiophene rings (2 and 3) on both sides of the DPP to alter the length of the π-cores. We also varied the length of the N-alkyl side chains (methyl, butyl, hexyl) attached to the DPP core. These variations allowed us to explicitly study the effect of π-core and N-alkyl side-chain length on photophysical properties and morphology of the resulting nanomaterials. All of these molecules formed H-type aggregates in the assembled state. Longer π-cores have relatively red-shifted absorption maxima, whereas the N-alkyl variation did not present significant photophysical changes. 
    more » « less
  6. null (Ed.)