Organic electronics offer a route toward electronically active biocompatible soft materials capable of interfacing with biological and living systems. One class of promising organic electronic materials are π-conjugated peptides, synthetic molecules comprising an aromatic core flanked by oligopeptides, that can be engineered to self-assemble into elongated nanostructures with emergent optoelectronic functionality. In this work, we combine molecular dynamics simulations with electronic structure and charge transport calculations to computationally screen for high charge mobility π-conjugated peptides and to elucidate design rules linking aromatic core character with charge mobility. We consider within our screening library variations in the aromatic core chemistry and length of the alkyl chains connecting the oligopeptide wings to the core. After completing our computational screen we identify particular π-conjugated peptides capable of producing self-assembled biocompatible nanoaggregates with predicted hole mobilities of 0.224 cm^2/(Vs) and electron mobilities of 0.143 cm^2/(Vs), and uncover design rules that enhance understanding of the molecular determinants of charge mobility within π-conjugated peptide assemblies.
more »
« less
Hybrid computational–experimental data-driven design of self-assembling π-conjugated peptides
Biocompatible molecules with electronic functionality provide a promising substrate for biocompatible electronic devices and electronic interfacing with biological systems. Synthetic oligopeptides composed of an aromatic π-core flanked by oligopeptide wings are a class of molecules that can self-assemble in aqueous environments into supramolecular nanoaggregates with emergent optical and electronic activity. We present an integrated computational–experimental pipeline employing all-atom molecular dynamics simulations and experimental UV-visible spectroscopy within an active learning workflow using deep representational learning and multi-objective and multi-fidelity Bayesian optimization to design π-conjugated peptides programmed to self-assemble into elongated pseudo-1D nanoaggregates with a high degree of H-type co-facial stacking of the π-cores. We consider as our design space the 694 982 unique π-conjugated peptides comprising a quaterthiophene π-core flanked by symmetric oligopeptide wings up to five amino acids in length. After sampling only 1181 molecules (∼0.17% of the design space) by computation and 28 (∼0.004%) by experiment, we identify and experimentally validate a diversity of previously unknown high-performing molecules and extract interpretable design rules linking peptide sequence to emergent supramolecular structure and properties.
more »
« less
- Award ID(s):
- 1841807
- PAR ID:
- 10332535
- Date Published:
- Journal Name:
- Digital Discovery
- ISSN:
- 2635-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Peptides naturally have stimuli‐adaptive structural conformations that are advantageous for endowing synthetic materials with dynamic functionalities. Here, we report a carbodiimide‐based approach, combined with electrostatic modulation, to instruct π‐conjugated peptides to self‐assemble and be responsive to thermal disassembly cues upon consumption of the assembly trigger. Quaterthiophene‐functionalized peptides are utilized as a model system herein to study the formation of nanostructures at non‐equilibrium states. Peptides were designed to have aspartic acid at the termini to allow intramolecular anhydride formation upon adding carbodiimide, which consequentially reduces the electrostatic repulsion and facilitates assembly. We show that the carbodiimide‐fueled assembly and subsequent thermally assisted disassembly can be modulated by the net charge of the peptidic monomers, suggesting an assembly mechanism that can be encoded by sequence design. This carbodiimide‐based approach for the assembly of designer π‐conjugated systems offers a unique opportunity to develop bioelectronic supramolecular materials with controllable formation of dynamic and stimuli‐responsive structures.more » « less
-
Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular BiomaterialsThroughout nature, self-assembly gives rise to functional supramolecular biomaterials that can perform complex tasks with extraordinary efficiency and specificity. Inspired by these examples, self-assembly is increasingly used to fabricate synthetic supramolecular biomaterials for diverse applications in biomedicine and biotechnology. Peptides are particularly attractive as building blocks for these materials because they are based on naturally derived amino acids that are biocompatible and biodegradable; they can be synthesized using scalable and cost-effective methods, and their sequence can be tailored to encode formation of diverse architectures. To endow synthetic supramolecular biomaterials with functional capabilities, it is now commonplace to conjugate self-assembling building blocks to molecules having a desired functional property, such as selective recognition of a cell surface receptor or soluble protein, antigenicity, or enzymatic activity. This review surveys recent advances in using self-assembling peptides as handles to incorporate biologically active molecules into supramolecular biomaterials. Particular emphasis is placed on examples of functional nanofibers, nanovesicles, and other nano-scale structures that are fabricated by linking self-assembling peptides to proteins and carbohydrates. Collectively, this review highlights the enormous potential of these approaches to create supramolecular biomaterials with sophisticated functional capabilities that can be finely tuned to meet the needs of downstream applications.more » « less
-
Abstract Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.more » « less
-
Conjugated copolymers containing electron donor and acceptor units in their main chain have emerged as promising materials for organic electronic devices due to their tunable optoelectronic properties. Herein, we describe the use of direct arylation polymerization to create a series of fully π-conjugated copolymers containing the highly tailorable purine scaffold as a key design element. To create efficient coupling sites, dihalopurines are flanked by alkylthiophenes to create a monomer that is readily copolymerized with a variety of conjugated comonomers, ranging from electron-donating 3,4-dihydro-2 H -thieno[3,4- b ][1,4]dioxepine to electron-accepting 4,7-bis(5-bromo-3-hexylthiophen-2-yl)benzo[ c ][1,2,5]thiadiazole. The comonomer choice and electronic nature of the purine scaffold allow the photophysical properties of the purine-containing copolymers to be widely varied, with optical bandgaps ranging from 1.96–2.46 eV, and photoluminescent quantum yields as high as ϕ = 0.61. Frontier orbital energy levels determined for the various copolymers using density functional theory tight binding calculations track with experimental results, and the geometric structures of the alkylthiophene-flanked purine monomer and its copolymer are found to be nearly planar. The utility of direct arylation polymerization and intrinsic tailorability of the purine scaffold highlight the potential of these fully conjugated polymers to establish structure–property relationships based on connectivity pattern and comonomer type, which may broadly inform efforts to advance purine-containing conjugated copolymers for various applications.more » « less
An official website of the United States government

